List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5569385/publications.pdf Version: 2024-02-01

		30070	19749
123	15,214	54	117
papers	citations	h-index	g-index
141	141	141	15512
all docs	docs citations	times ranked	citing authors

T P FEIDDAUSCH

#	Article	IF	CITATIONS
1	Climate defined but not soil-restricted: the distribution of a Neotropical tree through space and time. Plant and Soil, 2022, 471, 175-191.	3.7	0
2	Primary modes of tree mortality in southwestern Amazon forests. Trees, Forests and People, 2022, 7, 100180.	1.9	0
3	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
4	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	5.2	21
5	Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 2022, 110, 876-888.	4.0	12
6	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	3.3	7
7	Forest Fire History in Amazonia Inferred From Intensive Soil Charcoal Sampling and Radiocarbon Dating. Frontiers in Forests and Global Change, 2022, 5, .	2.3	6
8	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
9	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
10	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
11	Tracing carbon flow through a sugar maple forest and its soil components: role of invasive earthworms. Plant and Soil, 2021, 464, 517-537.	3.7	5
12	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	12.8	59
13	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
14	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
15	Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodiversity and Conservation, 2020, 29, 1519-1536.	2.6	36
16	Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil, 2020, 450, 65-79.	3.7	12
17	Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature, 2020, 2, 4-28.	3.7	74
18	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62

#	Article	IF	CITATIONS
19	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
20	Legacy of Amazonian Dark Earth soils on forest structure and species composition. Global Ecology and Biogeography, 2020, 29, 1458-1473.	5.8	28
21	Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest. Plant Ecology, 2020, 221, 733-747.	1.6	10
22	El Ni $ ilde{A}$ ±o Driven Changes in Global Fire 2015/16. Frontiers in Earth Science, 2020, 8, .	1.8	28
23	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
24	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
25	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
26	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
27	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
28	Fire Effects on Understory Forest Regeneration in Southern Amazonia. Frontiers in Forests and Global Change, 2020, 3, .	2.3	23
29	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	9.5	78
30	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44
31	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
32	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	1.3	18
33	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
34	The persistence of carbon in the African forest understory. Nature Plants, 2019, 5, 133-140.	9.3	41
35	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	27.8	371
36	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	6.4	75

#	Article	IF	CITATIONS
37	Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geoscientific Model Development, 2019, 12, 179-193.	3.6	41
38	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
39	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
40	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
41	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
42	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	2.4	12
43	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
44	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
45	Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and "Cerrado―biomes. Revista Brasileira De Botanica, 2018, 41, 611-619.	1.3	19
46	What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management, 2018, 429, 570-578.	3.2	14
47	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	4.5	143
48	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251
49	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	12.6	443
50	Charcoal chronology of the Amazon forest: A record of biodiversity preserved by ancient fires. Quaternary Geochronology, 2017, 41, 180-186.	1.4	14
51	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	1.6	5
52	Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 2017, 306, 237-243.	5.1	29
53	Relationships of S-Band Radar Backscatter and Forest Aboveground Biomass in Different Forest Types. Remote Sensing, 2017, 9, 1116.	4.0	27
54	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	1.3	14

#	Article	IF	CITATIONS
55	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
56	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
57	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
58	SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment, 2016, 175, 138-147.	11.0	118
59	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
60	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	7.1	161
61	Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: Southwestern Amazonian forests. Review of Palaeobotany and Palynology, 2016, 226, 30-43.	1.5	55
62	Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review, 2015, 17, 10-32.	0.6	50
63	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
64	Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochemical Cycles, 2015, 29, 1384-1399.	4.9	107
65	Ecology of Floodplain <i>Campos de Murundus</i> Savanna in Southern Amazonia. International Journal of Plant Sciences, 2015, 176, 670-681.	1.3	16
66	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
67	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	3.3	63
68	The influence of C ₃ and C ₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 2015, 12, 5041-5059.	3.3	19
69	Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão) in the Cerrado-Amazon transition zone. Acta Botanica Brasilica, 2015, 29, 408-416.	0.8	16
70	Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82.	27.8	464
71	Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects. Functional Plant Biology, 2015, 42, 63.	2.1	23
72	Diversity, floristic composition, and structure of the woody vegetation of the Cerrado in the Cerrado–Amazon transition zone in Mato Grosso, Brazil. Revista Brasileira De Botanica, 2015, 38, 877-887.	1.3	20

#	Article	IF	CITATIONS
73	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
74	Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia, 2015, 178, 659-672.	2.0	25
75	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
76	Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment, 2015, 169, 93-101.	11.0	92
77	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
78	Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecology and Diversity, 2015, 8, 229-241.	2.4	20
79	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	12.8	169
80	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
81	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
82	Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology and Diversity, 2014, 7, 231-240.	2.4	9
83	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	3.2	75
84	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
85	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
86	Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 260-270.	1.2	15
87	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
88	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
89	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
90	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264

#	Article	IF	CITATIONS
91	Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 2013, 40, 1729-1733.	4.0	284
92	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	3.3	78
93	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
94	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	9.5	114
95	Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 2012, 18, 2676-2676.	9.5	2
96	Droughtâ€induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 2012, 15, 1120-1129.	6.4	205
97	What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 2012, 21, 1179-1190.	5.8	187
98	Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sensing of Environment, 2011, 115, 2861-2873.	11.0	226
99	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	3.3	396
100	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 2011, 86, 457-474.	10.4	39
101	Comment on â€~A first map of tropical Africa's above-ground biomass derived from satellite imagery'. Environmental Research Letters, 2011, 6, 049001.	5.2	31
102	Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. Global Change Biology, 2010, 16, 1793-1805.	9.5	9
103	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	7.3	487
104	Coâ€limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell and Environment, 2010, 33, 959-980.	5.7	192
105	Calibrating the liana crown occupancy index in Amazonian forests. Forest Ecology and Management, 2010, 260, 549-555.	3.2	20
106	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	9.5	74
107	Increasing carbon storage in intact African tropical forests. Nature, 2009, 457, 1003-1006.	27.8	816
108	Disentangling regional and local tree diversity in the Amazon. Ecography, 2009, 32, 46-54.	4.5	61

#	Article	IF	CITATIONS
109	Using satellite radar backscatter to predict aboveâ€ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 2009, 36, .	4.0	222
110	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
111	Patterns of late-season photosynthate movement in sugar maple saplings. Canadian Journal of Forest Research, 2009, 39, 2294-2298.	1.7	22
112	Water-use efficiency of tree species following calcium and phosphorus application on an abandoned pasture, central Amazonia, Brazil. Environmental and Experimental Botany, 2008, 64, 189-195.	4.2	24
113	Secondary forest growth deviation from chronosequence predictions in central Amazonia. Global Change Biology, 2007, 13, 967-979.	9.5	74
114	Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. Journal of Vegetation Science, 2007, 18, 183-194.	2.2	51
115	Growth, leaf nutrient concentration and photosynthetic nutrient use efficiency in tropical tree species planted in degraded areas in central Amazonia. Forest Ecology and Management, 2006, 226, 299-309.	3.2	89
116	Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sensed imagery in southern Amazonia. Forest Ecology and Management, 2006, 233, 121-132.	3.2	24
117	Eficiência no uso dos nutrientes por espécies pioneiras crescidas em pastagens degradadas na Amazônia central. Acta Amazonica, 2006, 36, 503-512.	0.7	16
118	Development of Forest Structure and Leaf Area in Secondary Forests Regenerating on Abandoned Pastures in Central Amazônia. Earth Interactions, 2005, 9, 1-22.	1.5	38
119	When big trees fall: Damage and carbon export by reduced impact logging in southern Amazonia. Forest Ecology and Management, 2005, 219, 199-215.	3.2	87
120	Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 2005, 3, 365-369.	4.0	111
121	Legacy of Fire Slows Carbon Accumulation in Amazonian Forest Regrowth. Frontiers in Ecology and the Environment, 2005, 3, 365.	4.0	1
122	ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS. , 2004, 14, 3-16.		130
123	CARBON AND NUTRIENT ACCUMULATION IN SECONDARY FORESTS REGENERATING ON PASTURES IN CENTRAL AMAZONIA. , 2004, 14, 164-176.		197