
Mohit Kumar Jolly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5569093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Frontiers in Oncology, 2015, 5, 155.	2.8	581
2	MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18144-18149.	7.1	442
3	Tumor Budding: The Name is EMT. Partial EMT Journal of Clinical Medicine, 2016, 5, 51.	2.4	369
4	Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget, 2016, 7, 27067-27084.	1.8	367
5	Pseudomonas aeruginosa Biofilms. International Journal of Molecular Sciences, 2020, 21, 8671.	4.1	322
6	<scp>EMT</scp> and <scp>MET</scp> : necessary or permissive for metastasis?. Molecular Oncology, 2017, 11, 755-769.	4.6	319
7	Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. , 2019, 194, 161-184.		244
8	Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 148-157.	7.1	238
9	Survival Outcomes in Cancer Patients Predicted by a Partial EMT Gene Expression Scoring Metric. Cancer Research, 2017, 77, 6415-6428.	0.9	206
10	Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environment International, 2020, 144, 106067.	10.0	200
11	Epithelial–mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Developmental Dynamics, 2018, 247, 346-358.	1.8	190
12	Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1555-64.	7.1	174
13	Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules, 2019, 9, 339.	4.0	157
14	Coupling the modules of EMT and stemness: A tunable â€~stemness window' model. Oncotarget, 2015, 6, 25161-25174.	1.8	157
15	Towards elucidating the connection between epithelial–mesenchymal transitions and stemness. Journal of the Royal Society Interface, 2014, 11, 20140962.	3.4	156
16	Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	134
17	Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. Journal of the Royal Society Interface, 2016, 13, 20151106.	3.4	130
18	Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E402-9.	7.1	127

#	Article	IF	CITATIONS
19	Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Translational Oncology, 2020, 13, 100845.	3.7	125
20	Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Frontiers in Oncology, 2018, 8, 50.	2.8	122
21	Hybrid epithelial/mesenchymal phenotype(s): The †fittest' for metastasis?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 151-157.	7.4	122
22	OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget, 2015, 6, 15436-15448.	1.8	121
23	Inflammatory breast cancer: a model for investigating cluster-based dissemination. Npj Breast Cancer, 2017, 3, 21.	5.2	117
24	ZEB1: A Critical Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance. Frontiers in Molecular Biosciences, 2020, 7, 36.	3.5	112
25	Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. Journal of Clinical Medicine, 2019, 8, 1542.	2.4	109
26	Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3836-44.	7.1	107
27	Cancer Stem Cell Plasticity – A Deadly Deal. Frontiers in Molecular Biosciences, 2020, 7, 79.	3.5	106
28	NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integrative Biology (United Kingdom), 2019, 11, 251-263.	1.3	102
29	Tristability in Cancer-Associated MicroRNA-TF Chimera Toggle Switch. Journal of Physical Chemistry B, 2013, 117, 13164-13174.	2.6	99
30	Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036905.	6.2	98
31	Spleen Tyrosine Kinase–Mediated Autophagy Is Required for Epithelial–Mesenchymal Plasticity and Metastasis in Breast Cancer. Cancer Research, 2019, 79, 1831-1843.	0.9	95
32	Single-Cell RNA-seq Identifies Cell Subsets in Human Placenta That Highly Expresses Factors Driving Pathogenesis of SARS-CoV-2. Frontiers in Cell and Developmental Biology, 2020, 8, 783.	3.7	92
33	The GRHL2/ZEB Feedback Loop-A Key Axis in the Regulation of EMT in Breast Cancer. Journal of Cellular Biochemistry, 2017, 118, 2559-2570.	2.6	90
34	The three-way switch operation of Rac1/RhoA GTPase-based circuit controlling amoeboid-hybrid-mesenchymal transition. Scientific Reports, 2014, 4, 6449.	3.3	88
35	Mesenchymal-Epithelial Transition in Sarcomas Is Controlled by the Combinatorial Expression of MicroRNA 200s and GRHL2. Molecular and Cellular Biology, 2016, 36, 2503-2513.	2.3	88
36	The Physics of Cellular Decision Making During Epithelial–Mesenchymal Transition. Annual Review of Biophysics, 2020, 49, 1-18.	10.0	87

#	Article	IF	CITATIONS
37	Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 220.	4.1	87
38	MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Research, 2017, 77, 4414-4425.	0.9	85
39	A possible role for epigenetic feedback regulation in the dynamics of the epithelial–mesenchymal transition (EMT). Physical Biology, 2019, 16, 066004.	1.8	81
40	Cellular Migration and Invasion Uncoupled: Increased Migration Is Not an Inexorable Consequence of Epithelial-to-Mesenchymal Transition. Molecular and Cellular Biology, 2014, 34, 3486-3499.	2.3	80
41	Identifying inhibitors of epithelial–mesenchymal plasticity using a network topology-based approach. Npj Systems Biology and Applications, 2020, 6, 15.	3.0	80
42	Decoding leader cells in collective cancer invasion. Nature Reviews Cancer, 2021, 21, 592-604.	28.4	80
43	A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Computational Biology, 2020, 16, e1007619.	3.2	80
44	Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2644-E2653.	7.1	72
45	Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioengineering, 2018, 2, 031908.	6.2	71
46	Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers, 2017, 9, 70.	3.7	70
47	Distinguishing mechanisms underlying EMT tristability. Cancer Convergence, 2017, 1, 2.	8.0	69
48	Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Frontiers in Physiology, 2020, 11, 929.	2.8	68
49	Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins. Asian Journal of Andrology, 2016, 18, 704.	1.6	68
50	A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget, 2018, 9, 29906-29920.	1.8	67
51	Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding?. Molecular Oncology, 2017, 11, 739-754.	4.6	64
52	Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. Journal of Clinical Medicine, 2019, 8, 725.	2.4	63
53	Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. British Journal of Cancer, 2021, 124, 1902-1911.	6.4	63
54	Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs, 2018, 78, 1717-1740.	10.9	62

#	Article	IF	CITATIONS
55	Differential Contributions of Pre- and Post-EMT Tumor Cells in Breast Cancer Metastasis. Cancer Research, 2020, 80, 163-169.	0.9	62
56	The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer and Metastasis Reviews, 2014, 33, 441-468.	5.9	59
57	Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis. Scientific Reports, 2015, 5, 17379.	3.3	59
58	Whole Genomic Copy Number Alterations in Circulating Tumor Cells from Men with Abiraterone or Enzalutamide-Resistant Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2017, 23, 1346-1357.	7.0	58
59	Computational Modeling of the Crosstalk Between Macrophage Polarization and Tumor Cell Plasticity in the Tumor Microenvironment. Frontiers in Oncology, 2019, 9, 10.	2.8	55
60	Operating principles of Notch–Delta–Jagged module of cell–cell communication. New Journal of Physics, 2015, 17, 055021.	2.9	53
61	Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Frontiers in Immunology, 2021, 12, 797261.	4.8	52
62	Toward Decoding the Principles of Cancer Metastasis Circuits. Cancer Research, 2014, 74, 4574-4587.	0.9	51
63	Operating principles of tristable circuits regulating cellular differentiation. Physical Biology, 2017, 14, 035007.	1.8	49
64	Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23551-23561.	7.1	49
65	Intrinsically Disordered Proteins: Critical Components of the Wetware. Chemical Reviews, 2022, 122, 6614-6633.	47.7	48
66	Stability and mean residence times for hybrid epithelial/mesenchymal phenotype. Physical Biology, 2019, 16, 025003.	1.8	46
67	XIAP Regulation by MNK Links MAPK and NFήB Signaling to Determine an Aggressive Breast Cancer Phenotype. Cancer Research, 2018, 78, 1726-1738.	0.9	45
68	A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer, 2021, 3, zcab027.	3.1	45
69	Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer. Oncotarget, 2016, 7, 50507-50521.	1.8	44
70	Molecular Biology and Evolution of Cancer: From Discovery to Action. Molecular Biology and Evolution, 2020, 37, 320-326.	8.9	43
71	Limb salvage versus amputation in patients with osteosarcoma of the extremities: an update in the modern era using the National Cancer Database. BMC Cancer, 2020, 20, 995.	2.6	43
72	Integrative Analysis and Machine Learning Based Characterization of Single Circulating Tumor Cells. Journal of Clinical Medicine, 2020, 9, 1206.	2.4	42

#	Article	IF	CITATIONS
73	Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer. ELife, 2021, 10, .	6.0	42
74	A Biophysical Model Uncovers the Size Distribution of Migrating Cell Clusters across Cancer Types. Cancer Research, 2019, 79, 5527-5535.	0.9	40
75	PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer. Journal of Molecular Biology, 2018, 430, 2422-2438.	4.2	36
76	A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. Journal of Clinical Medicine, 2019, 8, 1772.	2.4	36
77	A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs, 2022, 211, 689-702.	2.3	36
78	E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Molecular Cancer Research, 2019, 17, 1391-1402.	3.4	35
79	Testing the gene expression classification of the EMT spectrum. Physical Biology, 2019, 16, 025002.	1.8	35
80	Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial–Mesenchymal Plasticity. Cancers, 2021, 13, 2188.	3.7	35
81	Epithelial-to-Mesenchymal Transition Enhances Cancer Cell Sensitivity to Cytotoxic Effects of Cold Atmospheric Plasmas in Breast and Bladder Cancer Systems. Cancers, 2021, 13, 2889.	3.7	35
82	Multi-stability in cellular differentiation enabled by a network of three mutually repressing master regulators. Journal of the Royal Society Interface, 2020, 17, 20200631.	3.4	35
83	Calcium signaling induces a partial EMT. EMBO Reports, 2021, 22, e51872.	4.5	33
84	Epigenetic feedback and stochastic partitioning during cell division can drive resistance to EMT. Oncotarget, 2020, 11, 2611-2624.	1.8	33
85	Anticipating critical transitions in epithelial–hybrid-mesenchymal cell-fate determination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26343-26352.	7.1	32
86	Hybrid E/M Phenotype(s) and Stemness: A Mechanistic Connection Embedded in Network Topology. Journal of Clinical Medicine, 2021, 10, 60.	2.4	31
87	Computational systems biology of epithelial-hybrid-mesenchymal transitions. Current Opinion in Systems Biology, 2017, 3, 1-6.	2.6	30
88	A Theoretical Approach to Coupling the Epithelial-Mesenchymal Transition (EMT) to Extracellular Matrix (ECM) Stiffness via LOXL2. Cancers, 2021, 13, 1609.	3.7	29
89	Systems-level network modeling deciphers the master regulators of phenotypic plasticity and heterogeneity in melanoma. IScience, 2021, 24, 103111.	4.1	29
90	Measuring and Modelling the Epithelial- Mesenchymal Hybrid State in Cancer: Clinical Implications. Cells Tissues Organs, 2022, 211, 110-133.	2.3	28

#	Article	IF	CITATIONS
91	Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. Current Stem Cell Reports, 2019, 5, 11-21.	1.6	27
92	NFATc Acts as a Non-Canonical Phenotypic Stability Factor for a Hybrid Epithelial/Mesenchymal Phenotype. Frontiers in Oncology, 2020, 10, 553342.	2.8	27
93	A Non-genetic Mechanism Involving the Integrin β4/Paxillin Axis Contributes to Chemoresistance in Lung Cancer. IScience, 2020, 23, 101496.	4.1	27
94	Phenotypic Switching of NaÃ ⁻ ve T Cells to Immune-Suppressive Treg-Like Cells by Mutant KRAS. Journal of Clinical Medicine, 2019, 8, 1726.	2.4	26
95	Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo. Rna, 2013, 19, 116-127.	3.5	25
96	Phenotypic heterogeneity in circulating tumor cells and its prognostic value in metastasis and overall survival. EBioMedicine, 2019, 46, 4-5.	6.1	24
97	Expression of immune checkpoints on circulating tumor cells in men with metastatic prostate cancer. Biomarker Research, 2021, 9, 14.	6.8	24
98	The Hallmarks of Cancer as Ecologically Driven Phenotypes. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	24
99	Histone deacetylases, Mbd3/NuRD, and Tet2 hydroxylase are crucial regulators of epithelial–mesenchymal plasticity and tumor metastasis. Oncogene, 2020, 39, 1498-1513.	5.9	23
100	OVOL1/2: Drivers of Epithelial Differentiation in Development, Disease, and Reprogramming. Cells Tissues Organs, 2022, 211, 183-192.	2.3	23
101	Nrf2 Modulates the Hybrid Epithelial/Mesenchymal Phenotype and Notch Signaling During Collective Cancer Migration. Frontiers in Molecular Biosciences, 2022, 9, 807324.	3.5	23
102	PhyloOncology: Understanding cancer through phylogenetic analysis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 101-108.	7.4	22
103	Exploring the Diversity of the Marine Environment for New Anti-cancer Compounds. Frontiers in Marine Science, 2021, 7, .	2.5	22
104	A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells. Carcinogenesis, 2020, 41, 1648-1659.	2.8	21
105	Group Behavior and Emergence of Cancer Drug Resistance. Trends in Cancer, 2021, 7, 323-334.	7.4	21
106	Carcinosarcomas: tumors in transition?. Histology and Histopathology, 2015, 30, 673-87.	0.7	21
107	KLF4 Induces Mesenchymal–Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors. Cancers, 2021, 13, 5135.	3.7	21
108	Quantifying the Patterns of Metabolic Plasticity and Heterogeneity along the Epithelial–Hybrid–Mesenchymal Spectrum in Cancer. Biomolecules, 2022, 12, 297.	4.0	21

#	Article	IF	CITATIONS
109	Functional balance between Tcf21–Slug defines cellular plasticity and migratory modalities in high grade serous ovarian cancer cell lines. Carcinogenesis, 2020, 41, 515-526.	2.8	20
110	Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Molecular Biology and Evolution, 2020, 37, 11-17.	8.9	20
111	Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. IScience, 2022, 25, 104317.	4.1	20
112	Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules, 2019, 9, 77.	4.0	19
113	Matrix adhesion and remodeling diversifies modes of cancer invasion across spatial scales. Journal of Theoretical Biology, 2021, 524, 110733.	1.7	19
114	Mathematical Modeling of Sub-Cellular Asymmetry of Fat-Dachsous Heterodimer for Generation of Planar Cell Polarity. PLoS ONE, 2014, 9, e97641.	2.5	18
115	From the Clinic to the Bench and Back Again in One Dog Year: How a Cross-Species Pipeline to Identify New Treatments for Sarcoma Illuminates the Path Forward in Precision Medicine. Frontiers in Oncology, 2020, 10, 117.	2.8	18
116	Emergent Properties of the HNF4α-PPARγ Network May Drive Consequent Phenotypic Plasticity in NAFLD. Journal of Clinical Medicine, 2020, 9, 870.	2.4	18
117	Analysis of immune subtypes across the epithelial-mesenchymal plasticity spectrum. Computational and Structural Biotechnology Journal, 2021, 19, 3842-3851.	4.1	18
118	An Integrative Systems Biology and Experimental Approach Identifies Convergence of Epithelial Plasticity, Metabolism, and Autophagy to Promote Chemoresistance. Journal of Clinical Medicine, 2019, 8, 205.	2.4	17
119	A Precision Medicine Drug Discovery Pipeline Identifies Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal Cancer. Molecular Cancer Therapeutics, 2020, 19, 2516-2527.	4.1	17
120	Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Human Molecular Genetics, 2020, 29, 1673-1688.	2.9	16
121	Analysis of Hierarchical Organization in Gene Expression Networks Reveals Underlying Principles of Collective Tumor Cell Dissemination and Metastatic Aggressiveness of Inflammatory Breast Cancer. Frontiers in Oncology, 2018, 8, 244.	2.8	15
122	CTCF Expression and Dynamic Motif Accessibility Modulates Epithelial–Mesenchymal Gene Expression. Cancers, 2022, 14, 209.	3.7	15
123	Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. Biophysics Reviews, 2022, 3, .	2.7	15
124	Pharmacodynamic study of radium-223 in men with bone metastatic castration resistant prostate cancer. PLoS ONE, 2019, 14, e0216934.	2.5	14
125	Immune dysregulation and osteosarcoma: Staphylococcus aureus downregulates TGFâ€î² and heightens the inflammatory signature in human and canine macrophages suppressed by osteosarcoma. Veterinary and Comparative Oncology, 2020, 18, 64-75.	1.8	14
126	Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer, 2020, 20, 592.	2.6	14

Mohit Kumar Jolly

#	Article	IF	CITATIONS
127	Interconnected high-dimensional landscapes of epithelial–mesenchymal plasticity and stemness in cancer. Clinical and Experimental Metastasis, 2022, 39, 279-290.	3.3	14
128	Decoding molecular interplay between RUNX1 and FOXO3a underlying the pulsatile IGF1R expression during acquirement of chemoresistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165754.	3.8	13
129	Investigating epithelialâ€mesenchymal heterogeneity of tumors and circulating tumor cells with transcriptomic analysis and biophysical modeling. Computational and Systems Oncology, 2021, 1, e1015.	1.5	13
130	Gene expression profiles of inflammatory breast cancer reveal high heterogeneity across the epithelial-hybrid-mesenchymal spectrum. Translational Oncology, 2021, 14, 101026.	3.7	13
131	Tumor Hybrid Cells: Nature and Biological Significance. Frontiers in Cell and Developmental Biology, 2022, 10, 814714.	3.7	13
132	A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 762-769.	3.9	13
133	Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy. Biomolecules, 2022, 12, 8.	4.0	13
134	Anticipating the Novel Coronavirus Disease (COVID-19) Pandemic. Frontiers in Public Health, 2020, 8, 569669.	2.7	12
135	Mathematical Modeling of Plasticity and Heterogeneity in EMT. Methods in Molecular Biology, 2021, 2179, 385-413.	0.9	12
136	Population Dynamics of Epithelial-Mesenchymal Heterogeneity in Cancer Cells. Biomolecules, 2022, 12, 348.	4.0	12
137	Emerging perspectives on growth factor metabolic relationships in the ovarian cancer ascites environment. Seminars in Cancer Biology, 2022, 86, 709-719.	9.6	12
138	Deciphering Hydrodynamic and Drug-Resistant Behaviors of Metastatic EMT Breast Cancer Cells Moving in a Constricted Microcapillary. Journal of Clinical Medicine, 2019, 8, 1194.	2.4	11
139	The Good, The Bad and The Ugly: A Mathematical Model Investigates the Differing Outcomes Among CoVID-19 Patients. Journal of the Indian Institute of Science, 2020, 100, 673-681.	1.9	11
140	A Comparative Oncology Drug Discovery Pipeline to Identify and Validate New Treatments for Osteosarcoma. Cancers, 2020, 12, 3335.	3.7	11
141	Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biology and Evolution, 2020, 12, 35-47.	2.5	11
142	The somatic molecular evolution of cancer: Mutation, selection, and epistasis. Progress in Biophysics and Molecular Biology, 2021, 165, 56-65.	2.9	11
143	Transcriptomic-Based Quantification of the Epithelial-Hybrid-Mesenchymal Spectrum across Biological Contexts. Biomolecules, 2022, 12, 29.	4.0	11
144	Oncogenic gain of function due to p53 amyloids occurs through aberrant alteration of cell cycle and proliferation. Journal of Cell Science, 2022, 135, .	2.0	11

#	Article	IF	CITATIONS
145	Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. Journal of Clinical Medicine, 2018, 7, 156.	2.4	10
146	A reciprocal feedback loop between HIF- $1\hat{1}\pm$ and HPIP controls phenotypic plasticity in breast cancer cells. Cancer Letters, 2022, 526, 12-28.	7.2	10
147	Biophysical and biochemical attributes of hybrid epithelial/mesenchymal phenotypes. Physical Biology, 2022, 19, 025001.	1.8	10
148	Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers, 2021, 13, 3602.	3.7	9
149	Semicoordinated allelic-bursting shape dynamic random monoallelic expression in pregastrulation embryos. IScience, 2021, 24, 102954.	4.1	9
150	Protein conformational dynamics and phenotypic switching. Biophysical Reviews, 2021, 13, 1127-1138.	3.2	9
151	Changes in Triple-Negative Breast Cancer Molecular Subtypes in Patients Without Pathologic Complete Response After Neoadjuvant Systemic Chemotherapy. JCO Precision Oncology, 2022, 6, e2000368.	3.0	9
152	Single-cell analysis reveals X upregulation is not global in pre-gastrulation embryos. IScience, 2022, 25, 104465.	4.1	9
153	Small Cell Lung Cancer Therapeutic Responses Through Fractal Measurements: From Radiology to Mitochondrial Biology. Journal of Clinical Medicine, 2019, 8, 1038.	2.4	8
154	The DNA walk and its demonstration of deterministic chaos—relevance to genomic alterations in lung cancer. Bioinformatics, 2019, 35, 2738-2748.	4.1	8
155	Countries with high deaths due to flu and tuberculosis demonstrate lower COVID-19 mortality: roles of vaccinations. Human Vaccines and Immunotherapeutics, 2021, 17, 2851-2862.	3.3	8
156	Roadmap on plasticity and epigenetics in cancer. Physical Biology, 2022, 19, 031501.	1.8	8
157	Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Molecular Biology of the Cell, 2022, 33, mbcE21100521.	2.1	8
158	Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Experimental Cell Research, 2022, 415, 113108.	2.6	8
159	U1 small nuclear RNA variants differentially form ribonucleoprotein particles in vitro. Gene, 2014, 540, 11-15.	2.2	7
160	Targeting the Id1-Kif11 Axis in Triple-Negative Breast Cancer Using Combination Therapy. Biomolecules, 2020, 10, 1295.	4.0	7
161	Computational Modeling of Collective Cell Migration: Mechanical and Biochemical Aspects. Advances in Experimental Medicine and Biology, 2019, 1146, 1-11.	1.6	7
162	Coupled Feedback Loops Involving PAGE4, EMT and Notch Signaling Can Give Rise to Non-Genetic Heterogeneity in Prostate Cancer Cells. Entropy, 2021, 23, 288.	2.2	6

#	Article	IF	CITATIONS
163	A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Frontiers in Oncology, 2021, 11, 641187.	2.8	6
164	In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers, 2022, 14, 1444.	3.7	6
165	The fundamentals of phenotypic plasticity. , 2020, , 1-21.		5
166	Multi-Stability and Consequent Phenotypic Plasticity in AMPK-Akt Double Negative Feedback Loop in Cancer Cells. Journal of Clinical Medicine, 2021, 10, 472.	2.4	5
167	Identifying Modifiable and Non-modifiable Risk Factors of Readmission and Short-Term Mortality in Osteosarcoma: A National Cancer Database Study. Annals of Surgical Oncology, 2021, 28, 7961-7972.	1.5	5
168	First passage time properties of miRNA-mediated protein translation. Journal of Theoretical Biology, 2021, 529, 110863.	1.7	5
169	An integrated comparative physiology and molecular approach pinpoints mediators of breath-hold capacity in dolphins. Evolution, Medicine and Public Health, 2021, 9, 420-430.	2.5	5
170	Extent of tumor fibrosis/hyalinization and infarction following neoadjuvant radiation therapy is associated with improved survival in patients with softâ€ŧissue sarcoma. Cancer Medicine, 2022, 11, 194-206.	2.8	5
171	Induction of Mesenchymal-Epithelial Transitions in Sarcoma Cells. Journal of Visualized Experiments, 2017, , .	0.3	4
172	Identifying "more equal than others―edges in diverse biochemical networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
173	Identifying critical transitions in complex diseases. Journal of Biosciences, 2022, 47, .	1.1	4
174	Quantitative Characteristic of ncRNA Regulation in Gene Regulatory Networks. Methods in Molecular Biology, 2019, 1912, 341-366.	0.9	3
175	An Integrative Systems Biology Approach Identifies Molecular Signatures Associated with Gallbladder Cancer Pathogenesis. Journal of Clinical Medicine, 2021, 10, 3520.	2.4	3
176	NRF2-dependent Epigenetic Regulation can Promote the Hybrid Epithelial/Mesenchymal Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 828250.	3.7	3
177	Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. Journal of the Indian Institute of Science, 2020, 100, 525-536.	1.9	2
178	Critical Steps in Epithelial-Mesenchymal Transition as Target for Cancer Treatment. Human Perspectives in Health Sciences and Technology, 2020, , 213-244.	0.4	2
179	Operating principles of circular toggle polygons. Physical Biology, 2021, 18, 046003.	1.8	2
180	Identifying Modifiable and Non-modifiable Risk Factors of Readmission and Short-Term Mortality in Chondrosarcoma: A National Cancer Database Study. Annals of Surgical Oncology, 2022, 29, 1392-1408.	1.5	2

#	Article	IF	CITATIONS
181	Manganese Porphyrin and Radiotherapy Improves Local Tumor Response and Overall Survival in Orthotopic Murine Mammary Carcinoma Models. Radiation Research, 2020, 195, 128-139.	1.5	2
182	Analysis of Yes-Associated Protein-1 (YAP1) Target Gene Signature to Predict Progressive Breast Cancer. Journal of Clinical Medicine, 2022, 11, 1947.	2.4	2
183	Cancer: More than a geneticist's Pandora's box. Journal of Biosciences, 2022, 47, .	1.1	2
184	Epithelial-mesenchymal transition in cancer. , 2020, , 553-568.		1
185	Insights into the Multi-Dimensional Dynamic Landscape of Epithelial–Mesenchymal Plasticity through Inter-Disciplinary Approaches. Journal of Clinical Medicine, 2020, 9, 1624.	2.4	1
186	ASO Visual Abstract: Identifying Modifiable and Non-Modifiable Risk Factors of Readmission and Short-Term Mortality in Osteosarcoma—A National Cancer Database Study. Annals of Surgical Oncology, 2021, 28, 449-450.	1.5	1
187	Editorial: Non-Genetic Heterogeneity in Development and Disease. Frontiers in Genetics, 2021, 12, 731814.	2.3	1
188	ASO Author Reflections: Identifying Modifiable and Non-Modifiable Risk Factors of Readmission and Short-Term Mortality in Chondrosarcoma. Annals of Surgical Oncology, 2022, 29, 1409-1410.	1.5	1
189	ASO Visual Abstract: Identifying Modifiable and Non-Modifiable Risk Factors of Readmission and Short-Term Mortality in Chondrosarcoma: A National Cancer Database Study. Annals of Surgical Oncology, 2021, , 1.	1.5	1
190	Post-Austronesian migrational wave of West Polynesians to Micronesia. Gene, 2022, 823, 146357.	2.2	1
191	Mean residence times of TF-TF and TF-miRNA toggle switches. Journal of Biosciences, 2022, 47, .	1.1	1
192	Multistability in GTPase-Based Decision Circuits. Biophysical Journal, 2014, 106, 379a-380a.	0.5	0
193	Modeling Epithelial-Mesenchymal Transitions in Metastatic Cancer. Biophysical Journal, 2015, 108, 313a.	0.5	Ο
194	Loss of immunoproteasome driven by EMT is associated with immune evasion and poor prognosis in non-small cell lung cancer. Journal of Thoracic Oncology, 2016, 11, S48-S49.	1.1	0
195	Phenotypic switching and prostate diseases: a model proposing a causal link between benign prostatic hyperplasia and prostate cancer. , 2020, , 569-589.		Ο
196	Epigenetics of epithelial to mesenchymal transition (EMT) in cancer. , 2021, , 237-264.		0
197	Editorial: Characterizing the Multi-Faceted Dynamics of Tumor Cell Plasticity. Frontiers in Molecular Biosciences, 2020, 7, 630276.	3.5	0
198	Abstract 1133: Partial EMT, hybrid epithelial-mesenchymal phenotype and epithelial plasticity: role of (miR-200/ZEB) loop. , 2014, , .		0

#	Article	IF	CITATIONS
199	Abstract B2-49: Coupled cellular decision-making of EMT and stemness: A bottom-up regulatory model. , 2015, , .		0
200	Abstract B2-24: OVOL: A brake on EMT, driver of MET and expander of the hybrid E/M phenotype. , 2015, , .		0
201	Abstract 3053: Stability and stemness of the hybrid epithelial-mesenchymal phenotype. , 2017, , .		0
202	Abstract 4999: Identifying intercellular phenotypic stability factors for a hybrid epithelial-mesenchymal phenotype. , 2018, , .		0
203	Interactive Dynamics of Reaction-Diffusion and Adhesion Predict Diverse Invasion Strategies of Cancer Cells in Matrix-Like Microenvironments. SSRN Electronic Journal, 0, , .	0.4	0
204	Abstract P5-04-04: Identification of AR driven tumors within TNBC using a novel gene signature. Cancer Research, 2022, 82, P5-04-04-P5-04-04.	0.9	0
205	Abstract 2783: <i>OMICS</i> analysis of breast cancer PDX tumors to determine CTC-cluster-specific signature in predicting breast cancer metastasis. , 2019, , .		0
206	Exome sequencing of hepatocellular carcinoma in lemurs identifies potential cancer drivers. Evolution, Medicine and Public Health, 2022, 10, 221-230.	2.5	0