
Koen Blanckaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568728/publications.pdf Version: 2024-02-01

KOEN BLANCKAERT

#	Article	IF	CITATIONS
1	A field investigation on debris flows in the incised Tongde sedimentary basin on the northeastern edge of the Tibetan Plateau. Catena, 2022, 208, 105727.	5.0	11
2	A Matlab script for the morphometric analysis of subaerial, subaquatic and extra-terrestrial rivers, channels and canyons. Computers and Geosciences, 2022, 162, 105080.	4.2	4
3	Secondary Flow and Flow Redistribution in Two Sharp Bends on the Middle Yangtze River. Water Resources Research, 2021, 57, e2020WR028534.	4.2	13
4	Study of factors influencing the invasion of Golden Mussels (<i>Limnoperna fortunei</i>) in water transfer projects. Aquatic Ecosystem Health and Management, 2019, 22, 385-395.	0.6	12
5	An investigation on the outer bank cell of secondary flow in channel bends. Journal of Hydro-Environment Research, 2018, 18, 1-11.	2.2	18
6	Measuring Bedload Sediment Transport with an Acoustic Doppler Velocity Profiler. Journal of Hydraulic Engineering, 2017, 143, 04017008.	1.5	14
7	Geometry of meandering and braided gravel-bed threads from the Bayanbulak Grassland, Tianshan, P.ÂR.ÂChina. Earth Surface Dynamics, 2016, 4, 273-283.	2.4	21
8	Modeling Flow Pattern and Evolution of Meandering Channels with a Nonlinear Model. Water (Switzerland), 2016, 8, 418.	2.7	15
9	Local tributary widening for river rehabilitation. Ecohydrology, 2016, 9, 204-217.	2.4	7
10	A parametrical study on secondary flow in sharp open-channel bends: experiments and theoretical modelling. Journal of Hydro-Environment Research, 2016, 13, 1-13.	2.2	32
11	Flow separation at convex banks inÂopenÂchannels. Journal of Fluid Mechanics, 2015, 779, 432-467.	3.4	56
12	Influencing Flow Patterns and Bed Morphology in Open Channels and Rivers by Means of an Air-Bubble Screen. Journal of Hydraulic Engineering, 2015, 141, .	1.5	11
13	Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments. Applied Microbiology and Biotechnology, 2015, 99, 6551-6561.	3.6	28
14	Ecologically-friendly operation scheme for the Jinping cascaded reservoirs in the Yalongjiang River, China. Frontiers of Earth Science, 2014, 8, 282-290.	2.1	8
15	Adaptation and multiple parameter optimization of the simulation model SALMO as prerequisite for scenario analysis on a shallow eutrophic Lake. Ecological Modelling, 2014, 273, 109-116.	2.5	25
16	Water Saving and Energy Reduction through Pressure Management in Urban Water Distribution Networks. Water Resources Management, 2014, 28, 3715-3726.	3.9	34
17	Effects of large wood on morphology, flow and turbulence in a Lowland River. , 2014, , 2493-2501.		2
18	Riparian vegetation dynamics: insight provided by a processâ€based model, a statistical model and field data. Ecohydrology, 2013, 6, 567-585.	2.4	20

Koen Blanckaert

#	Article	IF	CITATIONS
19	Reduction of bend scour with an air-bubble screen – morphology and flow patterns. International Journal of Sediment Research, 2013, 28, 15-23.	3.5	22
20	Optimal pipe replacement strategy based on break rate prediction through genetic programming for water distribution network. Journal of Hydro-Environment Research, 2013, 7, 134-140.	2.2	52
21	Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations. Ecological Modelling, 2013, 252, 266-272.	2.5	49
22	Flow separation at the inner (convex) and outer (concave) banks of constantâ€width and widening openâ€channel bends. Earth Surface Processes and Landforms, 2013, 38, 696-716.	2.5	92
23	The role of turbulence in the hydraulic environment of benthic invertebrates. Ecohydrology, 2013, 6, 700-712.	2.4	23
24	Generalized Likelihood Uncertainty Estimation Method in Uncertainty Analysis of Numerical Eutrophication Models: Take BLOOM as an Example. Mathematical Problems in Engineering, 2013, 2013, 1-9.	1.1	7
25	Hydrodynamic processes, sediment erosion mechanisms, and Reynolds-number-induced scale effects in an open channel bend of strong curvature with flat bathymetry. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2308-2324.	2.8	39
26	Fish (<i>Spinibarbus hollandi</i>) dynamics in relation to changing hydrological conditions: physical modelling, individualâ€based numerical modelling, and case study. Ecohydrology, 2013, 6, 586-597.	2.4	15
27	Meander dynamics: A reducedâ€order nonlinear model without curvature restrictions for flow and bed morphology. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1118-1131.	2.8	48
28	Ecohydraulics: linkages between hydraulics, morphodynamics and ecological processes in rivers. Ecohydrology, 2013, 6, 507-510.	2.4	2
29	Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. Journal of Environmental Management, 2012, 110, 116-124.	7.8	57
30	Processes governing the flow redistribution in sharp river bends. Geomorphology, 2012, 163-164, 45-55.	2.6	79
31	Optimizing the operation of the Qingshitan Reservoir in the Lijiang River for multiple human interests and quasi-natural flow maintenance. Journal of Environmental Sciences, 2012, 24, 1923-1928.	6.1	20
32	Flow and sediment dynamics in channel confluences. Journal of Geophysical Research, 2012, 117, .	3.3	122
33	Hydromorphological implications of local tributary widening for river rehabilitation. Water Resources Research, 2012, 48, .	4.2	46
34	Flow processes near smooth and rough (concave) outer banks in curved open channels. Journal of Geophysical Research, 2012, 117, .	3.3	59
35	Discussion of "Three-dimensional numerical study of flow structure in channel confluencesâ€Appears in the Canadian Journal of Civil Engineering, 37 (5): 772–781 Canadian Journal of Civil Engineering, 2011, 38, 124-126.	1.3	1
36	Hydrodynamic processes in sharp meander bends and their morphological implications. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	133

KOEN BLANCKAERT

#	Article	IF	CITATIONS
37	Large-eddy simulation of a curved open-channel flow over topography. Physics of Fluids, 2010, 22, .	4.0	61
38	Meander dynamics: A nonlinear model without curvature restrictions for flow in open•hannel bends. Journal of Geophysical Research, 2010, 115, .	3.3	113
39	Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resources Research, 2010, 46, .	4.2	133
40	Influence of shallowness, bank inclination and bank roughness on the variability of flow patterns and boundary shear stress due to secondary currents in straight open-channels. Advances in Water Resources, 2010, 33, 1062-1074.	3.8	79
41	Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. Journal of Turbulence, 2010, 11, N12.	1.4	56
42	Reduction of Bend Scour by an Outer Bank Footing: Flow Field and Turbulence. Journal of Hydraulic Engineering, 2009, 135, 361-368.	1.5	27
43	Large-eddy simulation of a mildly curved open-channel flow. Journal of Fluid Mechanics, 2009, 630, 413-442.	3.4	73
44	Saturation of curvatureâ€induced secondary flow, energy losses, and turbulence in sharp openâ€channel bends: Laboratory experiments, analysis, and modeling. Journal of Geophysical Research, 2009, 114, .	3.3	118
45	Improvement of Acoustic Doppler Velocimetry in steady and unsteady turbulent open-channel flows by means of seeding with hydrogen bubbles. Flow Measurement and Instrumentation, 2008, 19, 215-221.	2.0	13
46	Flow and bathymetry in sharp open hannel bends: Experiments and predictions. Water Resources Research, 2008, 44, .	4.2	99
47	Redistribution of Velocity and Bed-Shear Stress in Straight and Curved Open Channels by Means of a Bubble Screen: Laboratory Experiments. Journal of Hydraulic Engineering, 2008, 134, 184-195.	1.5	23
48	Reduction of Bend Scour by an Outer Bank Footing: Footing Design and Bed Topography. Journal of Hydraulic Engineering, 2007, 133, 139-147.	1.5	34
49	Means of noise reduction in acoustic turbulence measurements. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 3-17.	1.7	103
50	Turbulence characteristics in sharp open-channel bends. Physics of Fluids, 2005, 17, 055102.	4.0	50
51	Turbulence structure in sharp open-channel bends. Journal of Fluid Mechanics, 2005, 536, 27-48.	3.4	56
52	Secondary flow in sharp open-channel bends. Journal of Fluid Mechanics, 2004, 498, 353-380.	3.4	246
53	Momentum Transport in Sharp Open-Channel Bends. Journal of Hydraulic Engineering, 2004, 130, 186-198.	1.5	139
54	Nonlinear modeling of mean flow redistribution in curved open channels. Water Resources Research, 2003, 39, .	4.2	138

#	Article	IF	CITATIONS
55	Investigation on the Suitability of Two-Dimensional Depth-Averaged Models for Bend-Flow Simulation. Journal of Hydraulic Engineering, 2003, 129, 597-612.	1.5	34
56	Bend-Flow Simulation Using 2D Depth-Averaged Model. Journal of Hydraulic Engineering, 2001, 127, 167-170.	1.5	11
57	Mean Flow and Turbulence in Open-Channel Bend. Journal of Hydraulic Engineering, 2001, 127, 835-847.	1.5	184