List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unassisted overall water splitting with a solarâ€toâ€hydrogen efficiency of over 10% by coupled lead halide perovskite photoelectrodes. , 2023, 5, .		9
2	Expandable crosslinked polymer coatings on silicon nanoparticle anode toward high-rate and long-cycle-life lithium-ion battery. Applied Surface Science, 2022, 571, 151294.	6.1	15
3	Interfacial nitrogen modulated Z-scheme photoanode for solar water oxidation. Journal of Power Sources, 2022, 519, 230784.	7.8	7
4	A two-photon tandem black phosphorus quantum dot-sensitized BiVO ₄ photoanode for solar water splitting. Energy and Environmental Science, 2022, 15, 672-679.	30.8	64
5	Continuous Oxygen Vacancy Gradient in TiO ₂ Photoelectrodes by a Photoelectrochemicalâ€Driven "Selfâ€Purification―Process. Advanced Energy Materials, 2022, 12, .	19.5	42
6	Precise synthesis of single-atom Mo, W, Nb coordinated with oxygen functional groups of graphene oxide for stable and selective two-electron oxygen reduction in neutral media. Journal of Materials Chemistry A, 2022, 10, 9488-9496.	10.3	8
7	Enhanced band-filling effect in halide perovskites via hydrophobic conductive linkers. Cell Reports Physical Science, 2022, 3, 100800.	5.6	3
8	Black Phosphorusâ€Based Lithiumâ€lon Capacitor. Batteries and Supercaps, 2022, 5, .	4.7	1
9	Revealing improved electrocatalytic performances of electrochemically synthesized S and Ni doped Fe2O3 nanostructure interfaces. Applied Surface Science, 2022, 588, 152894.	6.1	6
10	Au/MoS2 tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Applied Catalysis B: Environmental, 2022, 308, 121219.	20.2	9
11	Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency. ACS Energy Letters, 2022, 7, 320-327.	17.4	19
12	Artificial photosynthesis for highâ€valueâ€added chemicals: Old material, new opportunity. , 2022, 4, 21-44.		49
13	Hierarchical pore enhanced adsorption and photocatalytic performance of graphene oxide/Ti-based metal-organic framework hybrid for toluene removal. Applied Catalysis B: Environmental, 2022, 317, 121751.	20.2	16
14	Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries. Journal of Membrane Science, 2021, 619, 118771.	8.2	24
15	Unprecedented electrocatalytic oxygen evolution performances by cobalt-incorporated molybdenum carbide microflowers with controlled charge re-distribution. Journal of Materials Chemistry A, 2021, 9, 1770-1783.	10.3	13
16	A highly activated iron phosphate over-layer for enhancing photoelectrochemical ammonia decomposition. Journal of Hazardous Materials, 2021, 408, 124900.	12.4	23
17	Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder. Applied Catalysis B: Environmental, 2021, 283, 119653.	20.2	33
18	Revisiting surface chemistry in TiO2: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation. Chemical Engineering Journal, 2021, 407, 126929.	12.7	11

#	Article	IF	CITATIONS
19	Unravelling the K-promotion effect in highly active and stable Fe5C2 nanoparticles for catalytic linear α-olefin production. Materials Advances, 2021, 2, 1050-1058.	5.4	3
20	High-Valent Iodoplumbate-Rich Perovskite Precursor Solution <i>via</i> Solar Illumination for Reproducible Power Conversion Efficiency. Journal of Physical Chemistry Letters, 2021, 12, 1676-1682.	4.6	12
21	Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation. Electrochimica Acta, 2021, 371, 137795.	5.2	15
22	Defect Dominated Hierarchical Tiâ€Metalâ€Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal. Advanced Functional Materials, 2021, 31, 2102511.	14.9	50
23	Metalâ€Assisted Efficient Nanotubular Electrocatalyst of MoS ₂ for Hydrogen Production. ChemCatChem, 2021, 13, 3237-3246.	3.7	2
24	Disordered-Layer-Mediated Reverse Metal–Oxide Interactions for Enhanced Photocatalytic Water Splitting. Nano Letters, 2021, 21, 5247-5253.	9.1	18
25	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021, 31, 2102300.	14.9	26
26	Preparation of multilayer periodic nanopatterned WO ₃ -based photoanode by reverse nanoimprinting for water splitting. Nanotechnology, 2021, 32, 395402.	2.6	2
27	Cyclohexylammoniumâ€Based 2D/3D Perovskite Heterojunction with Funnel‣ike Energy Band Alignment for Efficient Solar Cells (23.91%). Advanced Energy Materials, 2021, 11, 2102236.	19.5	77
28	Unnatural Hygroscopic Property of Nicotinic Acid by Restructuring Molecular Density: Self-Healing Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8932-8938.	4.6	2
29	Solar-harvesting lead halide perovskite for artificial photosynthesis. Journal of Energy Chemistry, 2021, 62, 11-26.	12.9	14
30	Enhanced desalination performance of nitrogen-doped porous carbon electrode in redox-mediated deionization. Desalination, 2021, 520, 115333.	8.2	12
31	Unveiling the enhanced electrocatalytic activity at electrochemically synthesized Pt–WO _{<i>x</i>} hybrid nanostructure interfaces. Chemical Communications, 2021, 57, 11165-11168.	4.1	5
32	Inhibition of iodide ion migration in flexible perovskite solar cells using oxide–metal–oxide transparent electrode. Surfaces and Interfaces, 2021, 27, 101546.	3.0	5
33	Pyrrolidiniumâ€₽EG Ionic Copolyester: Liâ€ I on Accelerator in Polymer Network Solidâ€ S tate Electrolytes. Advanced Energy Materials, 2021, 11, 2102660.	19.5	17
34	Tuning Selectivity of Photoelectrochemical Water Oxidation via Facet-Engineered Interfacial Energetics. ACS Energy Letters, 2021, 6, 4071-4078.	17.4	39
35	Improving the oxygen evolution reaction using electronic structure modulation of sulfur-retaining nickel-based electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 27034-27040.	10.3	25
36	Large and reversible sodium storage through interlaced reaction design. Energy Storage Materials, 2020, 25, 687-694.	18.0	9

#	Article	IF	CITATIONS
37	Boosting faradaic reactions of metal oxides on polymeric carbon nitride/PANI hybrid. Energy Storage Materials, 2020, 25, 487-494.	18.0	14
38	Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Applied Catalysis B: Environmental, 2020, 263, 118284.	20.2	62
39	In situ electrochemically synthesized Pt-MoO3â^'x nanostructure catalysts for efficient hydrogen evolution reaction. Journal of Catalysis, 2020, 381, 1-13.	6.2	35
40	Edge functionalized graphene nanoribbons with tunable band edges for carrier transport interlayers in organic–inorganic perovskite solar cells. Physical Chemistry Chemical Physics, 2020, 22, 2955-2962.	2.8	4
41	Electrochemically controlled CdS@CdSe nanoparticles on ITO@TiO2 dual core–shell nanowires for enhanced photoelectrochemical hydrogen production. Applied Surface Science, 2020, 505, 144569.	6.1	11
42	Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. Advanced Science, 2020, 7, 2001946.	11.2	85
43	Polymerâ€Clay Nanocomposite Solid‣tate Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation. Advanced Energy Materials, 2020, 10, 2003114.	19.5	99
44	Stretchable Hole Extraction Layer for Improved Stability in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 8004-8010.	6.7	13
45	Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H ₂ O Oxidative H ₂ O ₂ Synthesis. Journal of the American Chemical Society, 2020, 142, 8641-8648.	13.7	168
46	Ultrathin Hematite on Mesoporous WO ₃ from Atomic Layer Deposition for Minimal Charge Recombination. ACS Sustainable Chemistry and Engineering, 2020, 8, 11358-11367.	6.7	23
47	Black TiO ₂ : What are exact functions of disorder layer. , 2020, 2, 44-53.		48
48	Retarded Charge–Carrier Recombination in Photoelectrochemical Cells from Plasmonâ€Induced Resonance Energy Transfer. Advanced Energy Materials, 2020, 10, 2000570.	19.5	40
49	Highly dispersible graphene oxide nanoflakes in pseudo-gel-polymer porous separators for boosting ion transportation. Carbon, 2020, 166, 427-435.	10.3	10
50	Artificial Photosynthesis for Value-Added Chemicals Production. Ceramist, 2020, 23, 324-338.	0.1	0
51	Grain Boundary Healing of Organic–Inorganic Halide Perovskites for Moisture Stability. Nano Letters, 2019, 19, 6498-6505.	9.1	24
52	Electrochemical CH4 oxidation into acids and ketones on ZrO2:NiCo2O4 quasi-solid solution nanowire catalyst. Applied Catalysis B: Environmental, 2019, 259, 118095.	20.2	39
53	Unveiling the origin of performance reduction in perovskite solar cells with TiO2 electron transport layer: Conduction band minimum mismatches and chemical interactions at buried interface. Applied Surface Science, 2019, 495, 143490.	6.1	7
54	Cu ₂ Oâ^'Cu ₂ Se Mixedâ€Phase Nanoflake Arrays: pHâ€Universal Hydrogen Evolution Reactions with Ultralow Overpotential. ChemElectroChem, 2019, 6, 5014-5021.	3.4	8

#	Article	IF	CITATIONS
55	A "surface patching―strategy to achieve highly efficient solar water oxidation beyond surface passivation effect. Nano Energy, 2019, 66, 104110.	16.0	20
56	Band Alignment Engineering between Planar SnO ₂ and Halide Perovskites via Two-Step Annealing. Journal of Physical Chemistry Letters, 2019, 10, 6545-6550.	4.6	28
57	Liâ€Ion Batteries: Carbonâ€Coated Supraballs of Randomly Packed LiFePO 4 Nanoplates for High Rate and Stable Cycling of Liâ€Ion Batteries (Part. Part. Syst. Charact. 7/2019). Particle and Particle Systems Characterization, 2019, 36, 1970019.	2.3	0
58	Hydrogen Peroxide Production from Solar Water Oxidation. ACS Energy Letters, 2019, 4, 3018-3027.	17.4	170
59	Hot Scientific Debate on Halide Perovskites: Fundamentals, Photovoltaics, and Optoelectronics at Eighth Sungkyun International Solar Forum 2019 (SISF 2019). ACS Energy Letters, 2019, 4, 2475-2479.	17.4	5
60	Heterojunction Photoanode of Atomic-Layer-Deposited MoS ₂ on Single-Crystalline CdS Nanorod Arrays. ACS Applied Materials & Interfaces, 2019, 11, 37586-37594.	8.0	47
61	Disordered layers on WO ₃ nanoparticles enable photochemical generation of hydrogen from water. Journal of Materials Chemistry A, 2019, 7, 221-227.	10.3	54
62	Growth of BiVO ₄ nanoparticles on a WO ₃ porous scaffold: improved water-splitting by high band-edge light harvesting. Journal of Materials Chemistry A, 2019, 7, 4480-4485.	10.3	16
63	Aligned Heterointerfaceâ€Induced 1Tâ€MoS ₂ Monolayer with Nearâ€Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small, 2019, 15, e1804903.	10.0	63
64	An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries. Journal of Power Sources, 2019, 416, 89-94.	7.8	54
65	Carbonâ€Coated Supraballs of Randomly Packed LiFePO 4 Nanoplates for High Rate and Stable Cycling of Liâ€lon Batteries. Particle and Particle Systems Characterization, 2019, 36, 1900149.	2.3	6
66	Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nature Communications, 2019, 10, 2001.	12.8	222
67	Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. Journal of Materials Chemistry A, 2019, 7, 25985-25992.	10.3	12
68	In Operando Stacking of Reduced Graphene Oxide for Active Hydrogen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 43460-43465.	8.0	17
69	Rationally designed hybrids of NiCo2O4 and polymeric carbon nitride as faradaic electrodes with enhanced electrochemical performance. Electrochimica Acta, 2019, 299, 717-726.	5.2	20
70	Rationally Designed Copperâ€Modified Polymeric Carbon Nitride as a Photocathode for Solar Water Splitting. ChemSusChem, 2019, 12, 866-872.	6.8	26
71	Solar Cells: Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870045.	19.5	6
72	Conceptual design of three-dimensional CoN/Ni ₃ N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 4466-4476.	10.3	143

#	Article	IF	CITATIONS
73	Rapid Formation of a Disordered Layer on Monoclinic BiVO ₄ : Coâ€Catalystâ€Free Photoelectrochemical Solar Water Splitting. ChemSusChem, 2018, 11, 933-940.	6.8	34
74	Enthusiastic Discussions on Halide Perovskite Materials beyond Photovoltaics at Sungkyun International Solar Forum 2017 (SISF2017). ACS Energy Letters, 2018, 3, 199-203.	17.4	2
75	Oriented Grains with Preferred Lowâ€Angle Grain Boundaries in Halide Perovskite Films by Pressureâ€Induced Crystallization. Advanced Energy Materials, 2018, 8, 1702369.	19.5	74
76	Dual or multi carbonaceous coating strategies for next-generation batteries. Journal of Materials Chemistry A, 2018, 6, 1900-1914.	10.3	32
77	Mediator- and co-catalyst-free direct Z-scheme composites of Bi ₂ WO ₆ –Cu ₃ P for solar-water splitting. Nanoscale, 2018, 10, 3026-3036.	5.6	79
78	Solution-processed yolk–shell-shaped WO ₃ /BiVO ₄ heterojunction photoelectrodes for efficient solar water splitting. Journal of Materials Chemistry A, 2018, 6, 2585-2592.	10.3	95
79	Enhancement of Adsorption Performance for Organic Molecules by Combined Effect of Intermolecular Interaction and Morphology in Porous rGO-Incorporated Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 17335-17344.	8.0	21
80	Vertically Oriented MoS ₂ with Spatially Controlled Geometry on Nitrogenous Graphene Sheets for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1703300.	19.5	144
81	Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators. Applied Surface Science, 2018, 444, 339-344.	6.1	25
82	Metallic Ni ₃ S ₂ Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 12807-12815.	8.0	78
83	Stacked Porous Iron-Doped Nickel Cobalt Phosphide Nanoparticle: An Efficient and Stable Water Splitting Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 6146-6156.	6.7	113
84	Enhancing Mo:BiVO ₄ Solar Water Splitting with Patterned Au Nanospheres by Plasmonâ€Induced Energy Transfer. Advanced Energy Materials, 2018, 8, 1701765.	19.5	92
85	An Ãngström-level <i>d</i> -spacing controlling synthetic route for MoS ₂ towards stable intercalation of sodium ions. Journal of Materials Chemistry A, 2018, 6, 22513-22518.	10.3	24
86	Mixed-Phase (2H and 1T) MoS2 Catalyst for a Highly Efficient and Stable Si Photocathode. Catalysts, 2018, 8, 580.	3.5	20
87	Electrostatically regulated ternary-doped carbon foams with exposed active sites as metal-free oxygen reduction electrocatalysts. Nanoscale, 2018, 10, 19498-19508.	5.6	17
88	Porous supraparticles of LiFePO4 nanorods with carbon for high rate Li-ion batteries. Materials Express, 2018, 8, 316-324.	0.5	10
89	Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy, 2018, 54, 184-191.	16.0	33
90	Epitaxial growth of WO ₃ nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. Journal of Materials Chemistry A, 2018, 6, 19542-19546.	10.3	31

#	Article	IF	CITATIONS
91	Resolving Hysteresis in Perovskite Solar Cells with Rapid Flameâ€Processed Cobaltâ€Doped TiO ₂ . Advanced Energy Materials, 2018, 8, 1801717.	19.5	76
92	Design of a porous gel polymer electrolyte for sodium ion batteries. Journal of Membrane Science, 2018, 566, 122-128.	8.2	43
93	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	8.0	22
94	Additive-free electrode fabrication with reduced graphene oxide using supersonic kinetic spray for flexible lithium-ion batteries. Carbon, 2018, 139, 195-204.	10.3	19
95	Tuning surface chemistry and morphology of graphene oxide by Î ³ -ray irradiation for improved performance of perovskite photovoltaics. Carbon, 2018, 139, 564-571.	10.3	24
96	Halide Perovskite Nanopillar Photodetector. ACS Nano, 2018, 12, 8564-8571.	14.6	70
97	Strategy for Boosting Li-Ion Current in Silicon Nanoparticles. ACS Energy Letters, 2018, 3, 2252-2258.	17.4	49
98	Multiple Heterojunction in Single Titanium Dioxide Nanoparticles for Novel Metal-Free Photocatalysis. Nano Letters, 2018, 18, 4257-4262.	9.1	45
99	Methodologies toward Efficient and Stable Cesium Lead Halide Perovskiteâ€Based Solar Cells. Advanced Science, 2018, 5, 1800509.	11.2	53
100	Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. Journal of Materials Chemistry A, 2017, 5, 4543-4549.	10.3	105
101	Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Letters, 2017, 17, 2028-2033.	9.1	463
102	Plasmon-Sensitized Graphene/TiO ₂ Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 7075-7083.	8.0	121
103	Double 2-dimensional H 2 -evoluting catalyst tipped photocatalyst nanowires: A new avenue for high-efficiency solar to H 2 generation. Nano Energy, 2017, 34, 481-490.	16.0	51
104	Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 2936-2940.	4.6	169
105	Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Science Advances, 2017, 3, e1602215.	10.3	85
106	Long-term Stability of Conducting Polymers in Iodine/iodide Electrolytes: Beyond Conventional Platinum Catalysts. Electrochimica Acta, 2017, 227, 95-100.	5.2	9
107	Surface Localization of Defects in Black TiO ₂ : Enhancing Photoactivity or Reactivity. Journal of Physical Chemistry Letters, 2017, 8, 199-207.	4.6	97
108	Porphyrin Sensitizers with Donor Structural Engineering for Superior Performance Dye‧ensitized Solar Cells and Tandem Solar Cells for Water Splitting Applications. Advanced Energy Materials, 2017, 7, 1602117.	19.5	193

7

#	Article	IF	CITATIONS
109	Amorphous Phosphorus-Incorporated Cobalt Molybdenum Sulfide on Carbon Cloth: An Efficient and Stable Electrocatalyst for Enhanced Overall Water Splitting over Entire pH Values. ACS Applied Materials & Interfaces, 2017, 9, 37739-37749.	8.0	122
110	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	9.1	96
111	Edge-On MoS ₂ Thin Films by Atomic Layer Deposition for Understanding the Interplay between the Active Area and Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 7604-7614.	6.7	82
112	Ultrafast Flame Annealing of TiO ₂ Paste for Fabricating Dyeâ€Sensitized and Perovskite Solar Cells with Enhanced Efficiency. Small, 2017, 13, 1702260.	10.0	16
113	Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science, 2017, 4, 1700379.	11.2	73
114	A Structurable Gelâ€Polymer Electrolyte for Sodium Ion Batteries. Advanced Functional Materials, 2017, 27, 1701768.	14.9	90
115	Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale, 2017, 9, 12677-12683.	5.6	18
116	Tailored Metal Oxide Thin Film on Polyethylene Separators for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1965-A1969.	2.9	22
117	Hierarchical MnCo-layered double hydroxides@Ni(OH) ₂ core–shell heterostructures as advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 1043-1049.	10.3	296
118	Overcoming Charge Collection Limitation at Solid/Liquid Interface by a Controllable Crystal Deficient Overlayer. Advanced Energy Materials, 2017, 7, 1600923.	19.5	61
119	Stibnite sensitized hollow cubic TiO2 photoelectrodes for organic-inorganic heterojunction solar cells. Solar Energy, 2017, 157, 434-440.	6.1	6
120	Water Splitting Progress in Tandem Devices: Moving Photolysis beyond Electrolysis. Advanced Energy Materials, 2016, 6, 1600602.	19.5	268
121	Delocalized Electron Accumulation at Nanorod Tips: Origin of Efficient H ₂ Generation. Advanced Functional Materials, 2016, 26, 4527-4534.	14.9	60
122	Core-Shelled Low-Oxidation State Oxides@Reduced Graphene Oxides Cubes via Pressurized Reduction for Highly Stable Lithium Ion Storage. Advanced Functional Materials, 2016, 26, 2959-2965.	14.9	38
123	Hybrid Silver Mesh Electrode for ITOâ€Free Flexible Polymer Solar Cells with Good Mechanical Stability. ChemSusChem, 2016, 9, 1042-1049.	6.8	36
124	Tunable Bandgap Energy and Promotion of H ₂ O ₂ Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles. Advanced Energy Materials, 2016, 6, 1502352.	19.5	79
125	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	3.6	10
126	Controlled pore evolution during phase inversion from the combinatorial non-solvent approach: application to battery separators. Journal of Materials Chemistry A, 2016, 4, 9496-9501.	10.3	33

#	Article	IF	CITATIONS
127	Understanding the synergistic effect of WO3–BiVO4 heterostructures by impedance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 9255-9261.	2.8	41
128	Layer-by-Layer Self-Assembled Graphene Multilayers as Pt-Free Alternative Counter Electrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11488-11498.	8.0	20
129	A facile chemical synthesis of ZnO@multilayer graphene nanoparticles with fast charge separation and enhanced performance for application in solar energy conversion. Nano Energy, 2016, 25, 9-17.	16.0	35
130	Counterbalancing of morphology and conductivity of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based flexible devices. Nanoscale, 2016, 8, 19557-19563.	5.6	13
131	High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes. Electrochimica Acta, 2016, 214, 31-37.	5.2	28
132	A Sharp Focus on Perovskite Solar Cells at Sungkyun International Solar Forum (SISF). ACS Energy Letters, 2016, 1, 500-502.	17.4	4
133	PVdF-HFP/exfoliated graphene oxide nanosheet hybrid separators for thermally stable Li-ion batteries. RSC Advances, 2016, 6, 80706-80711.	3.6	24
134	Hollow and yolk-shell structured off-stoichiometric tungsten trioxide via selective leaching and hydrogenation for enhanced lithium storage properties. Electrochimica Acta, 2016, 215, 466-472.	5.2	9
135	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 11819-11823.	13.8	178
136	Dual Oxygen and Tungsten Vacancies on a WO ₃ Photoanode for Enhanced Water Oxidation. Angewandte Chemie, 2016, 128, 11998-12002.	2.0	71
137	Solution processable formation of a few nanometer thick-disordered overlayer on the surface of open-ended TiO ₂ nanotubes. Chemical Communications, 2016, 52, 13807-13810.	4.1	10
138	Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu ₂ ZnSnS ₄ Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters, 2016, 1, 1127-1136.	17.4	103
139	Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nature Communications, 2016, 7, 11943.	12.8	144
140	Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode. Scientific Reports, 2016, 6, 32011.	3.3	26
141	Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability. Journal of Power Sources, 2016, 336, 307-315.	7.8	18
142	Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy and Environmental Science, 2016, 9, 3657-3665.	30.8	41
143	A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. Nanoscale, 2016, 8, 3474-3481.	5.6	29
144	Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. ACS Applied Materials & Interfaces, 2016, 8, 449-454.	8.0	91

#	Article	IF	CITATIONS
145	Large Area Platinum and Fluorine-doped Tin Oxide-free Dye sensitized Solar Cells with Silver-Nanoplate Embedded Poly(3,4-Ethylenedioxythiophene) Counter Electrode. Electrochimica Acta, 2016, 187, 218-223.	5.2	10
146	An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy and Environmental Science, 2016, 9, 499-503.	30.8	241
147	Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Scientific Reports, 2015, 5, 14276.	3.3	56
148	General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting. ChemSusChem, 2015, 8, 3192-3203.	6.8	64
149	Incorporation of PEDOT:PSS into SnO2/reduced graphene oxide nanocomposite anodes for lithium-ion batteries to achieve ultra-high capacity and cyclic stability. RSC Advances, 2015, 5, 13964-13971.	3.6	30
150	Graphene Photodetectors: High–Performance Perovskite–Graphene Hybrid Photodetector (Adv.) Tj ETQq0 C) 0 rgBT /C	veglock 10 Ti
151	Facile control of intra- and inter-particle porosity in template-free synthesis of size-controlled nanoporous titanium dioxides beads for efficient organic–inorganic heterojunction solar cells. Journal of Power Sources, 2015, 279, 72-79.	7.8	6
152	Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantum dots. Nano Energy, 2015, 13, 258-266.	16.0	53
153	Facilitated Ion Diffusion in Multiscale Porous Particles: Application in Battery Separators. ACS Applied Materials & Interfaces, 2015, 7, 4511-4517.	8.0	25
154	Cylindrical nanostructured MoS ₂ directly grown on CNT composites for lithium-ion batteries. Nanoscale, 2015, 7, 3404-3409.	5.6	86
155	Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 4803-4810.	10.3	87
156	Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy, 2015, 13, 182-191.	16.0	138
157	Conflicted Effects of a Solvent Additive on PTB7:PC ₇₁ BM Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2015, 119, 5954-5961.	3.1	155
158	Self-Organized Formation of Embossed Nanopatterns on Various Metal Substrates: Application to Flexible Solar Cells. Electrochimica Acta, 2015, 176, 636-641.	5.2	1
159	Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes. Scientific Reports, 2015, 5, 11032.	3.3	54
160	Enhanced performance of layer-evolved bulk-heterojunction solar cells with Ag nanoparticles by sequential deposition. Organic Electronics, 2015, 24, 325-329.	2.6	8
161	Prevention of sulfur diffusion using MoS ₂ -intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries. Nanoscale, 2015, 7, 11928-11933.	5.6	23
162	The tailored inner space of TiO ₂ electrodes via a 30 second wet etching process: high efficiency solid-state perovskite solar cells. Nanoscale, 2015, 7, 10745-10751.	5.6	11

#	Article	IF	CITATIONS
163	Incorporation of a Metal Oxide Interlayer using a Virusâ€Templated Assembly for Synthesis of Grapheneâ€Electrodeâ€Based Organic Photovoltaics. ChemSusChem, 2015, 8, 2385-2391.	6.8	6
164	Clay Nanosheets in Skeletons of Controlled Phase Inversion Separators for Thermally Stable Liâ€lon Batteries. Advanced Functional Materials, 2015, 25, 3399-3404.	14.9	44
165	Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO ₄ . Nano Letters, 2015, 15, 6756-6763.	9.1	125
166	Highly Efficient Solar Water Splitting from Transferred TiO ₂ Nanotube Arrays. Nano Letters, 2015, 15, 5709-5715.	9.1	95
167	Highly Transparent Dual-Sensitized Titanium Dioxide Nanotube Arrays for Spontaneous Solar Water Splitting Tandem Configuration. ACS Applied Materials & Interfaces, 2015, 7, 18429-18434.	8.0	19
168	Promising efficiency enhancement in cobalt redox couple-based back-illuminated dye-sensitized solar cells with titanium foil substrate. Journal of Power Sources, 2015, 278, 32-37.	7.8	16
169	Opto-electronic properties of TiO ₂ nanohelices with embedded HC(NH ₂) ₂ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9179-9186.	10.3	67
170	Enhanced Fill Factor of Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer and Optimized Interlayer. ChemSusChem, 2015, 8, 331-336.	6.8	8
171	Highâ€Performance Perovskite–Graphene Hybrid Photodetector. Advanced Materials, 2015, 27, 41-46.	21.0	753
172	Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Solar Energy Materials and Solar Cells, 2015, 132, 47-55.	6.2	33
173	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	6.8	12
174	Efficient solution-processed small-molecule solar cells by insertion of graphene quantum dots. Nanoscale, 2014, 6, 15175-15180.	5.6	30
175	Quasi-solid-state Dye-sensitized Solar Cells with Macropore-containing Hierarchical Electrodes. Electrochimica Acta, 2014, 135, 192-198.	5.2	4
176	Graphene oxide-assisted production of carbon nitrides using a solution process and their photocatalytic activity. Carbon, 2014, 66, 119-125.	10.3	49
177	Controlled thermal sintering of a metal–metal oxide–carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries. Chemical Communications, 2014, 50, 2589.	4.1	14
178	Si–Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 1702-1708.	8.0	44
179	Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency. Solar Energy Materials and Solar Cells, 2014, 122, 24-30.	6.2	20
180	Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in Highâ€Rate Lithiumâ€lon Batteries and the Hydrogen Evolution Reaction. ChemSusChem, 2014, 7, 2489-2495.	6.8	82

#	Article	IF	CITATIONS
181	Lysozyme-mediated biomineralization of titanium–tungsten oxide hybrid nanoparticles with high photocatalytic activity. Chemical Communications, 2014, 50, 12392-12395.	4.1	18
182	Enhanced Performance and Stability of Polymer BHJ Photovoltaic Devices from Dry Transfer of PEDOT:PSS. ChemSusChem, 2014, 7, 1957-1963.	6.8	23
183	Enhancement of the power conversion efficiency in a polymer solar cell using a work-function-controlled TimSinOx interlayer. Journal of Materials Chemistry A, 2014, 2, 2033-2039.	10.3	4
184	Efficient Hole Extraction from Sb ₂ S ₃ Heterojunction Solar Cells by the Solid Transfer of Preformed PEDOT:PSS Film. Journal of Physical Chemistry C, 2014, 118, 22672-22677.	3.1	24
185	Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chemistry of Materials, 2014, 26, 5592-5597.	6.7	88
186	Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Applied Materials & Interfaces, 2014, 6, 12380-12387.	8.0	128
187	A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 2014, 6, 11828-11834.	5.6	161
188	Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5, 4775.	12.8	367
189	Tailoring of the plasmonic and waveguide effect in bulk-heterojunction photovoltaic devices with ordered, nanopatterned structures. Organic Electronics, 2014, 15, 3120-3126.	2.6	3
190	A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9636.	10.3	48
191	Highly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11158-11166.	8.0	54
192	Multi-Functionality of Macroporous TiO ₂ Spheres in Dye-Sensitized and Hybrid Heterojunction Solar Cells. Langmuir, 2014, 30, 3010-3018.	3.5	38
193	Conducting Polymer Coated Non-woven Graphite Fiber Film for Dye-Sensitized Solar Cells: Superior Pt- and FTO-Free Counter Electrodes. Electrochimica Acta, 2014, 137, 164-168.	5.2	30
194	Graphene/Acid Coassisted Synthesis of Ultrathin MoS ₂ Nanosheets with Outstanding Rate Capability for a Lithium Battery Anode. Inorganic Chemistry, 2013, 52, 9807-9812.	4.0	106
195	Sub-100nm scale polymer transfer printing process for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2013, 109, 1-7.	6.2	7
196	Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano, 2013, 7, 7207-7212.	14.6	171
197	Transferable Graphene Oxide by Stamping Nanotechnology: Electronâ€Transport Layer for Efficient Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 2874-2880. 	13.8	112
198	Surface roughened 1-D Au host nanorods for visible light induced photocatalyst. Electrochimica Acta, 2013, 97, 404-408.	5.2	11

#	Article	IF	CITATIONS
199	Temperature sensing behavior of poly(3,4-ethylenedioxythiophene) thin film. Synthetic Metals, 2013, 185-186, 52-55.	3.9	4
200	Improvement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Film. Molecular Crystals and Liquid Crystals, 2013, 580, 76-82.	0.9	7
201	Chemically Modified Graphene Oxide-Wrapped Quasi-Micro Ag Decorated Silver Trimolybdate Nanowires for Photocatalytic Applications. Journal of Physical Chemistry C, 2013, 117, 24023-24032.	3.1	37
202	Understanding the positive effects of (Co–Pi) co-catalyst modification in inverse-opal structured α-Fe2O3-based photoelectrochemical cells. International Journal of Hydrogen Energy, 2013, 38, 12725-12732.	7.1	50
203	Polymerâ€free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage. ChemSusChem, 2013, 6, 2144-2148.	6.8	14
204	Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells. Nanoscale, 2013, 5, 7838.	5.6	64
205	Solution processable silica thin film coating on microporous substrate with high tortuosity: application to a battery separator. RSC Advances, 2013, 3, 16708.	3.6	10
206	Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays. Journal of Power Sources, 2013, 225, 263-268.	7.8	42
207	Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting. Nanoscale, 2013, 5, 1939.	5.6	70
208	Highly Efficient Monolithic Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 2070-2074.	8.0	21
209	Single-step solvothermal synthesis of mesoporous Ag–TiO2–reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale, 2013, 5, 5093.	5.6	204
210	Layer-by-Layer All-Transfer-Based Organic Solar Cells. Langmuir, 2013, 29, 5377-5382.	3.5	22
211	Highly robust silicon nanowire/graphene core–shell electrodes without polymeric binders. Nanoscale, 2013, 5, 8986.	5.6	33
212	Polymer Bulk Heterojunction Solar Cells with PEDOT:PSS Bilayer Structure as Hole Extraction Layer. ChemSusChem, 2013, 6, 1070-1075.	6.8	26
213	Controlled synthesis of skein shaped TiO2–B nanotube cluster particles with outstanding rate capability. Chemical Communications, 2013, 49, 2326.	4.1	32
214	Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells. Scientific Reports, 2013, 3, .	3.3	43
215	Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 11717.	2.8	38
216	Discrepancy of Optimum Ratio in Bulk Heterojunction Photovoltaic Devices: Initial Cell Efficiency vs Long-Term Stability. ACS Applied Materials & amp; Interfaces, 2013, 5, 1612-1618.	8.0	12

#	Article	IF	CITATIONS
217	Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 9775.	2.8	38
218	Photoelectrochemical Properties of Vertically Oriented Hematite/Gold Multi-Block Nanorod Arrays and Their Comparison to Pure Hematite Nanorod Arrays. Journal of Nanoscience and Nanotechnology, 2013, 13, 1910-1913.	0.9	0
219	Porous Materials: Multiâ€6cale Pore Generation from Controlled Phase Inversion: Application to Separators for Liâ€Ion Batteries (Adv. Energy Mater. 11/2013). Advanced Energy Materials, 2013, 3, 1394-1394.	19.5	0
220	Multi‧cale Pore Generation from Controlled Phase Inversion: Application to Separators for Liâ€ŀon Batteries. Advanced Energy Materials, 2013, 3, 1417-1420.	19.5	29
221	Color-Stable White-Light-Emitting Diodes Doped with Phosphorescent Dopants via Enhanced Energy Transfer Through Homogeneous Morphology. Journal of Nanoscience and Nanotechnology, 2013, 13, 4203-4206.	0.9	0
222	PEDOT Polymer Film Based Counter Electrodes for Pt-free Dye-Sensitized Solar Cells. Journal of Electrochemical Science and Technology, 2013, 4, 89-92.	2.2	5
223	Green Synthesis of Biphasic TiO ₂ –Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces, 2012, 4, 3893-3901.	8.0	509
224	Polymer Solar Cells: Efficiency Increase in Flexible Bulk Heterojunction Solar Cells with a Nanoâ€Patterned Indium Zinc Oxide Anode (Adv. Energy Mater. 11/2012). Advanced Energy Materials, 2012, 2, 1282-1282.	19.5	1
225	Hollow Polypyrrole Films: Applications for Energy Storage Devices. Journal of the Electrochemical Society, 2012, 159, A1052-A1056.	2.9	19
226	Ultrathin nanoclay films with tunable thickness as barrier layers in organic light emitting devices. Journal of Materials Chemistry, 2012, 22, 7718.	6.7	15
227	Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Physical Chemistry Chemical Physics, 2012, 14, 11119.	2.8	107
228	Size-Tunable, Fast, and Facile Synthesis of Titanium Oxide Nanotube Powders for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 4164-4168.	8.0	21
229	High-efficiency polymer photovoltaic cells using a solution-processable insulating interfacial nanolayer: the role of the insulating nanolayer. Journal of Materials Chemistry, 2012, 22, 25148.	6.7	41
230	Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. Chemical Communications, 2012, 48, 11939.	4.1	35
231	Controlling Surface Enrichment in Polymeric Hole Extraction Layers to Achieve Highâ€Efficiency Organic Photovoltaic Cells. ChemSusChem, 2012, 5, 2053-2057.	6.8	28
232	Controlled Dissolution of Polystyrene Nanobeads: Transition from Liquid Electrolyte to Gel Electrolyte. Nano Letters, 2012, 12, 2233-2237.	9.1	58
233	Stamping Transfer of a Quantum Dot Interlayer for Organic Photovoltaic Cells. Langmuir, 2012, 28, 9893-9898.	3.5	24
234	Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates. RSC Advances, 2012, 2, 7268.	3.6	57

#	Article	IF	CITATIONS
235	Sideâ€chain effects on phenothiazineâ€based donor–acceptor copolymer properties in organic photovoltaic devices. Journal of Polymer Science Part A, 2012, 50, 649-658.	2.3	19
236	The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. Chemical Communications, 2012, 48, 6456.	4.1	83
237	Efficiency Increase in Flexible Bulk Heterojunction Solar Cells with a Nanoâ€Patterned Indium Zinc Oxide Anode. Advanced Energy Materials, 2012, 2, 1319-1322.	19.5	40
238	Flexible and Platinumâ€Free Dyeâ€Sensitized Solar Cells with Conductingâ€Polymerâ€Coated Graphene Counter Electrodes. ChemSusChem, 2012, 5, 379-382.	6.8	133
239	Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation. Journal of Power Sources, 2012, 210, 32-37.	7.8	39
240	Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. Journal of Power Sources, 2012, 212, 22-27.	7.8	84
241	Stability comparison: A PCDTBT/PC71BM bulk-heterojunction versus a P3HT/PC71BM bulk-heterojunction. Solar Energy Materials and Solar Cells, 2012, 101, 249-255.	6.2	49
242	The role of non-solvent swelling in bulk hetero junction solar cells. Solar Energy Materials and Solar Cells, 2012, 102, 196-200.	6.2	10
243	Efficient and low potential operative host/guest concentration graded bilayer polymer electrophosphorescence devices. Journal of Luminescence, 2012, 132, 870-874.	3.1	3
244	PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor. Journal of Electrochemical Science and Technology, 2012, 3, 143-148.	2.2	2
245	Analysis of surface morphological changes in organic photovoltaic devices: bilayer versus bulk-heterojunction. Energy and Environmental Science, 2011, 4, 1434.	30.8	21
246	Dye-sensitized solar cells with TiO2 nano-particles on TiO2 nano-tube-grown Ti substrates. Journal of Materials Chemistry, 2011, 21, 3558.	6.7	43
247	Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes. Journal of Materials Chemistry, 2011, 21, 15193.	6.7	18
248	Controlled Synthesis of Vertically Aligned Hematite on Conducting Substrate for Photoelectrochemical Cells: Nanorods versus Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 1852-1858.	8.0	100
249	Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells. Nano Letters, 2011, 11, 3163-3168.	9.1	114
250	Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Nanotechnology, 2011, 22, 175703.	2.6	65
251	Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy and Environmental Science, 2011, 4, 1465.	30.8	142
252	Hierarchical Construction of Self-Standing Anodized Titania Nanotube Arrays and Nanoparticles for Efficient and Cost-Effective Front-Illuminated Dye-Sensitized Solar Cells. ACS Nano, 2011, 5, 5088-5093.	14.6	110

#	Article	IF	CITATIONS
253	Electric-Field-Assisted Layer-by-Layer Assembly of Weakly Charged Polyelectrolyte Multilayers. Macromolecules, 2011, 44, 2866-2872.	4.8	42
254	Transferred vertically aligned N-doped carbon nanotube arrays: use in dye-sensitized solar cells as counter electrodes. Chemical Communications, 2011, 47, 4264.	4.1	175
255	Facile Synthesis of TiO ₂ Inverse Opal Electrodes for Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 856-860.	3.5	47
256	Polypyrrole/Titanium Oxide Nanotube Arrays Composites as an Active Material for Supercapacitors. Journal of Nanoscience and Nanotechnology, 2011, 11, 4522-4526.	0.9	11
257	Color-tunable electrophosphorescent device fabricated by a photo-bleaching method. Thin Solid Films, 2011, 520, 452-456.	1.8	2
258	Highly Interconnected Porous Electrodes for Dye‣ensitized Solar Cells Using Viruses as a Sacrificial Template. Advanced Functional Materials, 2011, 21, 1160-1167.	14.9	31
259	Enhanced Power Conversion Efficiency in PCDTBT/PC ₇₀ BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters. Advanced Energy Materials, 2011, 1, 766-770.	19.5	242
260	Polyanilineâ€Based Conducting Polymer Compositions with a High Work Function for Holeâ€Injection Layers in Organic Lightâ€Emitting Diodes: Formation of Ohmic Contacts. ChemSusChem, 2011, 4, 363-368.	6.8	49
261	Inside Cover: Polyaniline-Based Conducting Polymer Compositions with a High Work Function for Hole-Injection Layers in Organic Light-Emitting Diodes: Formation of Ohmic Contacts (ChemSusChem) Tj ETQq1	1 6.3 8431	4ogBT/Over
262	Rücktitelbild: Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles (Angew. Chem. 24/2011). Angewandte Chemie, 2011, 123, n/a-n/a.	2.0	0
263	Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 5519-5523.	13.8	334
264	Back Cover: Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles (Angew. Chem. Int. Ed. 24/2011). Angewandte Chemie - International Edition, 2011, 50, 5404-5404.	13.8	2
265	White-light-emitting diodes using miscible polymer blend doped with phosphorescent dye. Organic Electronics, 2011, 12, 891-896.	2.6	11
266	The effect of a concentration graded cathode for organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2443-2447.	6.2	8
267	Enhanced Photocurrent Density of Tungsten Oxide Hollow Particle Arrays Produced by Colloidal Template Synthesis. Journal of Nanoscience and Nanotechnology, 2011, 11, 1538-1541.	0.9	3
268	Fabrication and Photocatalytic Effects of Tungsten Trioxide Nano-Pattern Arrays. Materials Express, 2011, 1, 245-251.	0.5	5
269	Effects of E-beam Irradiation on Physical and Electrochemical Properties of Inorganic Nanoparticle Separators with Different Particle Sizes. Journal of the Electrochemical Society, 2011, 158, A511.	2.9	6
270	Enhanced Photoelectrochemical Cell Property from <i>α</i> -Fe ₂ O ₃ Nanoparticle Decoration on Vertically Grown TiO ₂ Nanotubes Arrays. Journal of Nanoscience and Nanotechnology, 2011, 11, 7290-7293.	0.9	5

#	Article	IF	CITATIONS
271	Generation behavior of elctricity in a microbial fuel cell. Korean Journal of Chemical Engineering, 2010, 27, 546-550.	2.7	1
272	Preparation of a trilayer separator and its application to lithium-ion batteries. Journal of Power Sources, 2010, 195, 8302-8305.	7.8	85
273	Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 593-597.	2.5	18
274	Electrochemical performances of inorganic membrane coated electrodes for li-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 769-773.	2.5	14
275	Effect of MWCNT on the performances of the rounded shape natural graphite as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 951-956.	2.5	8
276	Heat transfer characteristics of high temperature molten salt for storage of thermal energy. Korean Journal of Chemical Engineering, 2010, 27, 1452-1457.	2.7	22
277	Roles of Interlayers in Efficient Organic Photovoltaic Devices. Macromolecular Rapid Communications, 2010, 31, 2095-2108.	3.9	92
278	Effect of the ordered 2D-dot nano-patterned anode for polymer solar cells. Organic Electronics, 2010, 11, 285-290.	2.6	30
279	Active layer transfer by stamping technique for polymer solar cells: Synergistic effect of TiOx interlayer. Organic Electronics, 2010, 11, 599-603.	2.6	22
280	Unexpected solid–solid intermixing in a bilayer of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acidmethyl ester via stamping transfer. Organic Electronics, 2010, 11, 1376-1380.	2.6	37
281	Highly conductive PEDOT/silicate hybrid anode for ITO-free polymer solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 471-477.	6.2	34
282	Catalytic characteristics of carbon black for decomposition of ethane. Carbon, 2010, 48, 2030-2036.	10.3	12
283	Enhanced charge collection via nanoporous morphology in polymer solar cells. Applied Physics Letters, 2010, 96, 103304.	3.3	12
284	Positive Effects of E-Beam Irradiation in Inorganic Particle Based Separators for Lithium-Ion Battery. Journal of the Electrochemical Society, 2010, 157, A31.	2.9	21
285	Observation of Positive Effects of Freestanding Scattering Film in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 288-291.	8.0	23
286	Spontaneous Surface Flattening via Layer-by-Layer Assembly of Interdiffusing Polyelectrolyte Multilayers. Langmuir, 2010, 26, 17756-17763.	3.5	10
287	Holographically Defined TiO2 Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 2970-2973.	8.0	17
288	Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate. Journal of Materials Chemistry, 2010, 20, 2247.	6.7	71

JONG HYEOK PARK

#	Article	IF	CITATIONS
289	Photovoltaic Devices with an Active Layer from a Stamping Transfer Technique: Single Layer Versus Double Layer. Langmuir, 2010, 26, 9584-9588.	3.5	38
290	Dye-sensitized solar cells with Pt- and TCO-free counter electrodes. Chemical Communications, 2010, 46, 4505.	4.1	172
291	CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chemical Communications, 2010, 46, 2385.	4.1	124
292	Solution-processable polymer based photovoltaic devices with concentration graded bilayers made via composition control of a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester. Journal of Materials Chemistry, 2010, 20, 4910.	6.7	25
293	Controlled TiO[sub 2] Nanotube Arrays as an Active Material for High Power Energy-Storage Devices. Journal of the Electrochemical Society, 2009, 156, A584.	2.9	62
294	Effect of Incorporation of TiO2 Nanoparticles into Oriented TiO2 Nanotube Based Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 7436-9.	0.9	5
295	Charge Carrier Trapping and Enhanced Electroluminescent Efficiency of Blue Light Emitting Polymer with Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 7451-5.	0.9	1
296	Dual functions of a new n-type conjugated dendrimer: light-emitting material and additive for polymer electroluminescent devices. Journal Physics D: Applied Physics, 2009, 42, 035101.	2.8	3
297	Inverted Bottom-Emission Polymer Light-Emitting Devices Doped with Organic Salt. Japanese Journal of Applied Physics, 2009, 48, 110203.	1.5	2
298	Designing a Stable Cathode with Multiple Layers to Improve the Operational Lifetime of Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 1863-1868.	14.9	26
299	Enhanced photocatalytic oxidation properties in Pt-TiO2 thin films by grounding. Korean Journal of Chemical Engineering, 2009, 26, 392-397.	2.7	4
300	Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens. Korean Journal of Chemical Engineering, 2009, 26, 748-753.	2.7	32
301	Enhanced carrier balance by organic salt doping in single-layer polymer light-emitting devices. Organic Electronics, 2009, 10, 1345-1351.	2.6	16
302	Optimization of polymeric host composition for polymer-based electrophosphorescent devices. Journal of Luminescence, 2009, 129, 496-500.	3.1	4
303	Dye-sensitized solar cells containing polymer film with honey-comb like morphology. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 151-154.	3.9	7
304	Enhanced High-Temperature Long-Term Stability of Polymer Solar Cells with a Thermally Stable TiOx Interlayer. Journal of Physical Chemistry C, 2009, 113, 17268-17273.	3.1	60
305	Optimization of Conditions for Hydrogen Production from Anodized TiO2 Nanotube-Based Photoelectrochemical Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 7293-7.	0.9	5
306	Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers. Applied Physics Letters, 2009, 95, 043505.	3.3	62

#	Article	IF	CITATIONS
307	Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. Journal of Power Sources, 2008, 184, 284-287.	7.8	60
308	New approach for nanoscale morphology of polymer solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1188-1191.	6.2	14
309	Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008, , 2867.	4.1	218
310	Fabrication of an Efficient Dye-Sensitized Solar Cell with Stainless Steel Substrate. Journal of the Electrochemical Society, 2008, 155, F145.	2.9	118
311	Effect of Oxidant on Morphology and Electrochemistry of Polypyrrole-Coated Graphite Fiber. Electrochemical and Solid-State Letters, 2008, 11, A68.	2.2	6
312	Spin-Assembled Nanolayer of a Hyperbranched Polymer on the Anode in Organic Light-Emitting Diodes: The Mechanism of Hole Injection and Electron Blocking. Langmuir, 2008, 24, 12704-12709.	3.5	14
313	Dual Functions of Clay Nanoparticles with High Aspect Ratio in Dye-Sensitized Solar Cells. Electrochemical and Solid-State Letters, 2008, 11, B171.	2.2	31
314	Low vacuum process for polymer solar cells: Effect of TiOx interlayer. Applied Physics Letters, 2008, 92, 143504.	3.3	37
315	Electrophosphorescent devices from a poly(9-vinylcarbazole)/tris(2-phenylpyridine)iridium(III) bilayer with a concentration gradient. Applied Physics Letters, 2007, 90, 043514.	3.3	3
316	Enhanced electroluminescence in emissive polymer/CdSe double-layer films. Thin Solid Films, 2007, 515, 3085-3089.	1.8	28
317	A systematic doping strategy to control the emission spectrum of ternary luminescent polymer blends for white emission. Optical Materials, 2007, 30, 486-491.	3.6	16
318	Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters, 2006, 89, 163106.	3.3	103
319	Photoelectrochemical Tandem Cell with Bipolar Dye-Sensitized Electrodes for Vectorial Electron Transfer for Water Splitting. Electrochemical and Solid-State Letters, 2006, 9, E5-E8.	2.2	66
320	P-197: Polymer Nanocomposite Blue-Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2006, 37, 968.	0.3	0
321	White light emission from a polymer bilayer by incomplete cascade energy transfer. Current Applied Physics, 2006, 6, 640-643.	2.4	5
322	Novel Carbon-Doped TiO2Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 2006, 6, 24-28.	9.1	1,649
323	Improved asymmetric electrochemical capacitor using Zn-Co co-doped Ni(OH)2 positive electrode material. Applied Physics A: Materials Science and Processing, 2006, 82, 593-597.	2.3	40
324	Effect of hole transporting layer doped with organic salts on performance of polymer electroluminescent devices. Current Applied Physics, 2006, 6, 616-619.	2.4	6

#	Article	IF	CITATIONS
325	White polymer light-emitting devices from ternary-polymer blend with concentration gradient. Chemical Physics Letters, 2005, 403, 293-297.	2.6	34
326	Unassisted Water Splitting from Bipolar Ptâ^•Dye-Sensitizedâ€,TiO[sub 2] Photoelectrode Arrays. Electrochemical and Solid-State Letters, 2005, 8, G371.	2.2	38
327	Enhanced electrophosphorescence via highly efficient energy transfer from conjugated polymer. Applied Physics Letters, 2005, 86, 171108.	3.3	28
328	WHITE-ELECTROLUMINESCENCE DEVICE BASED ON POLYMER/QUANTUM DOT NANOCOMPOSITES. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 481-486.	1.8	7
329	Enhanced color purity and stability from polymer/nanoporous silica nanocomposite blue light-emitting diodes. Synthetic Metals, 2005, 154, 145-148.	3.9	3
330	Polymer/nanoporous silica nanocomposite blue-light-emitting diodes. Nanotechnology, 2005, 16, 1793-1797.	2.6	20
331	Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes. Applied Physics Letters, 2004, 84, 1783-1785.	3.3	35
332	BLUE LIGHT-EMITTING POLYMER/DIELECTRIC NANOLAYER NANOCOMPOSITES: IMPEDIMENT OF EXCIMER FORMATION AND ENHANCEMENT OF PHOTOSTABILITY. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 607-611.	1.8	0
333	White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer. Nanotechnology, 2004, 15, 1217-1220.	2.6	100
334	Enhanced light output in bilayer light-emitting diodes with film thickness variations. Chemical Physics Letters, 2004, 386, 101-104.	2.6	9
335	Enhanced electroluminescence from a conjugated polymer/ionomer blend. Polymer, 2004, 45, 8567-8571.	3.8	18
336	Stabilized Blue Emission from Polymer–Dielectric Nanolayer Nanocomposites. Advanced Functional Materials, 2004, 14, 377-382.	14.9	25
337	Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices. Materials Science and Engineering C, 2004, 24, 75-78.	7.3	9
338	Hole-transporting property of a chemically hybridized poly(vinylcarbazole)-fullerene. Current Applied Physics, 2004, 4, 659-662.	2.4	9
339	Polymer/Gold Nanoparticle Nanocomposite Light-Emitting Diodes:Â Enhancement of Electroluminescence Stability and Quantum Efficiency of Blue-Light-Emitting Polymers. Chemistry of Materials, 2004, 16, 688-692.	6.7	180
340	Enhancement of Photostability in Blue-Light-Emitting Polymers Doped with Gold Nanoparticles. Macromolecular Rapid Communications, 2003, 24, 331-334.	3.9	36
341	Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. Journal of Power Sources, 2003, 124, 18-25.	7.8	154
342	Carbon Nanotube/RuO[sub 2] Nanocomposite Electrodes for Supercapacitors. Journal of the Electrochemical Society, 2003, 150, A864.	2.9	195

#	Article	IF	CITATIONS
343	An Electrochemical Capacitor Based on a Ni(OH)[sub 2]/Activated Carbon Composite Electrode. Electrochemical and Solid-State Letters, 2002, 5, H7.	2.2	200
344	Improved Electrorheological Effect in Polyaniline Nanocomposite Suspensions. Journal of Colloid and Interface Science, 2002, 245, 198-203.	9.4	64
345	Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. Journal of Power Sources, 2002, 105, 20-25.	7.8	227
346	Morphology and electrochemical behaviour of ruthenium oxide thin film deposited on carbon paper. Journal of Power Sources, 2002, 109, 121-126.	7.8	39
347	Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources, 2002, 111, 185-190.	7.8	194
348	Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheologica Acta, 2001, 40, 211-219.	2.4	151
349	Rheological properties and stability of magnetorheological fluids using viscoelastic medium and nanoadditives. Korean Journal of Chemical Engineering, 2001, 18, 580-585.	2.7	47
350	Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion. Journal of Colloid and Interface Science, 2001, 240, 349-354.	9.4	121