Vaclav Drchal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5567978/publications.pdf

Version: 2024-02-01

221 papers 5,348 citations

39 h-index 102480 66 g-index

221 all docs

221 docs citations

times ranked

221

3285 citing authors

#	Article	IF	CITATIONS
1	Electron transport in high-entropy alloys: AlxCrFeCoNi as a case study. Physical Review B, 2019, 100, .	3.2	5
2	$\mbox{\ensuremath{\mbox{\scriptsize (i)}}}\mbox{\ensuremath{\mbox{\scriptsize Ab}}}$ initio $\mbox{\ensuremath{\mbox{\scriptsize (i)}}}\mbox{\ensuremath{\mbox{\scriptsize theory}}}$ of the spin-dependent conductivity tensor and the spin Hall effect in random alloys. Physical Review B, 2019, 100, .	3.2	7
3	Alloy disorder and fluctuating magnetic moments in the Earth's core. Journal of Magnetism and Magnetic Materials, 2019, 475, 767-771.	2.3	7
4	Tetragonal CuMnAs alloy: Role of defects. Journal of Magnetism and Magnetic Materials, 2019, 474, 467-471.	2.3	7
5	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">N<mml:msub><mml:mi mathvariant="normal">i<mml:mrow><mml:mn>49.7</mml:mn></mml:mrow></mml:mi </mml:msub><mml:mi mathvariant="normal">M<mml:msub><mml:mi< td=""><td>3.2</td><td>4</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	4
6	mathvariant="normal"> n <mml:mrow> <mml:mn> 29.1</mml:mn> </mml:mrow> <mml:ml </mml:ml Electronic and transport properties of a new quaternary Heusler alloy CoMnFeSi. Physical Review B, 2018, 97, .	3.2	10
7	Ab Initio Theory of the Gilbert Damping in Random Ferromagnetic Alloys. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1669-1672.	1.8	3
8	Physical properties of the tetragonal CuMnAs: A first-principles study. Physical Review B, 2017, 96, .	3.2	16
9	Transport properties of iron at Earth's core conditions: The effect of spin disorder. Physical Review B, 2017, 96, .	3.2	20
10	Galvanomagnetic Transport Properties and Gilbert Damping in Ferromagnetic PdCo Alloys. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1367-1370.	1.8	3
11	Spin-orbit driven phenomena in the isoelectronic L10 -Fe(Pd,Pt) alloys from first principles. Physical Review B, 2017, 96, .	3.2	2
12	Defects and magnetic structure of CuMnSb. Journal of Physics: Conference Series, 2017, 903, 012034.	0.4	0
13	Coherence and stiffness of spin waves in diluted ferromagnets. Physical Review B, 2016, 94, .	3.2	2
14	Surface analysis of the Heusler Ni49.7Mn29.1Ga21.2 Alloy: The composition, phase transition, and twinned microstructure of martensite. Journal of Applied Physics, 2016, 120, 113905.	2.5	3
15	Defect-induced magnetic structure of CuMnSb. Physical Review B, 2016, 94, .	3.2	8
16	Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles. Physical Review B, 2016, 94, .	3.2	2
17	Electronic and transport properties of the Mn-doped topological insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mfl:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m< td=""><td>1>22/mml</td><td>:m1176> </td></m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mfl:msub></mml:mrow></mml:msub></mml:mrow></mml:math>	1> 22/ mml	:m1176>

Band mapping of the weakly off-stoichiometric Heusler alloy<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Ni</mml:mtext><manh miltim:mtext><manh miltim:mtext><man

#	Article	IF	CITATIONS
19	Nonlocal torque operators in <i>ab initio</i> theory of the Gilbert damping in random ferromagnetic alloys. Physical Review B, 2015, 92, .	3.2	29
20	Effect of partial order on galvanomagnetic transport properties of ferromagnetic PdFe and PdCo alloys. Physical Review B, 2015, 92, .	3.2	6
21	Relativistic Effects on Electron Transport in Magnetic Alloys. Physics Procedia, 2015, 75, 948-955.	1.2	0
22	Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition. Physical Review B, 2015, 91, .	3.2	53
23	Galvanomagnetic properties of partially ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mrow><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>ı > B.⊈mml</td><td>:ma≱<mml:n< td=""></mml:n<></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ı > B.⊈ mml	:m a ≱ <mml:n< td=""></mml:n<>
24	Fermi sea term in the relativistic linear muffin-tin-orbital transport theory for random alloys. Physical Review B, 2014, 89, .	3.2	34
25	Unified approach to electronic, thermodynamical, and transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mzmlns:mml="http: 1998="" math="" mathml"="" www.w3.org=""><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mphysical 2014.="" 90<="" b.="" review="" td=""><td>ın>3ın>3<td>าl:mp>าl:mñ></td></td></mml:mphysical></mml:msub></mml:mrow></mml:mzmlns:mml="http:></mml:msub></mml:mrow></mml:math>	ın>3ın>3 <td>าl:mp>าl:mñ></td>	าl:mp>าl:mñ>
26	Magnetotransport in Pd-Rich PdFe Alloys. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1749-1752.	1.8	5
27	Effective Magnetic Hamiltonians. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1997-2000.	1.8	1
28	Critical Temperatures of Random Iron–Cobalt Overlayers on the fcc-Cu(001) Substrate. Journal of Superconductivity and Novel Magnetism, 2013, 26, 809-812.	1.8	1
29	Anomalous Hall effect in stoichiometric Heusler alloys with native disorder: A first-principles study. Physical Review B, 2013, 88, .	3.2	47
30	The disordered local moment approach to the spin-disorder resistivity of metallic ferromagnets. EPJ Web of Conferences, 2013, 40, 12001.	0.3	5
31	Influence of oxygen and hydrogen adsorption on the magnetic structure of an ultrathin iron film on an Ir(001) surface. Physical Review B, 2013, 88, .	3.2	11
32	First-principles study of thermodynamical properties of random magnetic overlayers on fcc-Cu(001) substrate. Physical Review B, 2013, 87, .	3.2	6
33	Effective magnetic Hamiltonians from ï¬rst principles. EPJ Web of Conferences, 2013, 40, 11001.	0.3	12
34	Spin polarization of Bloch states and Hall currents in GaAs quantum wells. EPJ Web of Conferences, 2013, 40, 12003.	0.3	0
35	First-principles calculations of transport and magnetic properties of rare-earth materials. , 2012 , , .		2
36	Real-space distribution of the Hall current densities and their spin polarization in nonmagnetic zinc-blende semiconductors. Physical Review B, 2012, 86, .	3.2	0

#	Article	IF	Citations
37	First-principles study of spin-disorder resistivity of heavy rare-earth metals: Gd–Tm series. Physical Review B, 2012, 85, .	3.2	13
38	Spin-disorder resistivity of ferromagnetic metals from first principles: The disordered-local-moment approach. Physical Review B, 2012, 86, .	3.2	44
39	Ab initiotheory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Physical Review B, 2012, 86, .	3.2	57
40	Magnetism and electronic transport in (Ni, Cu)2MnSn Heusler alloys under ambient and elevated pressures. World Journal of Engineering, 2012, 9, 13-22.	1.6	4
41	Effects of atomic and magnetic order on electronic transport in Pd-rich Pd-Fe alloys. Physical Review B, 2011, 84, .	3.2	17
42	Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. Physical Review B, 2011, 84, .	3.2	30
43	Pressure effect on magnetic moments in ordered Ni ₃ Mn and disordered Ni _{100â^<i>x</i>} Mn _{<i>x</i>} alloys: <i>ab initio</i> alculation and experiment. High Pressure Research, 2011, 31, 116-120.	1.2	10
44	First-principles study of properties of semi-Heusler (Cu,Ni)MnSb alloys. Journal of Physics: Conference Series, 2010, 200, 032036.	0.4	1
45	Exchange Interactions in the Bcc Fe/TaW(001) System. E-Journal of Surface Science and Nanotechnology, 2010, 8, 157-160. Magnetism of mixed quaternary Heusler alloys: <mml:math< td=""><td>0.4</td><td>О</td></mml:math<>	0.4	О
	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mm< td=""><td>l:mtext>N</td><td>i</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	l:mtext>N	i

display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow

#	Article	IF	CITATIONS
55	TB-LMTO method for an embedded cluster. Philosophical Magazine, 2008, 88, 2777-2786.	1.6	О
56	Electronic, magnetic, and transport properties and magnetic phase transition in quaternary (Cu,Ni)MnSb Heusler alloys. Physical Review B, 2008, 78, .	3.2	47
57	Local atomic and electronic structure of thePbâ^•Si(111)mosaic phase: STM andab initiostudy. Physical Review B, 2008, 77, .	3.2	15
58	Multiplet effects in the electronic structure of \hat{l} -Pu, Am and their compounds. Europhysics Letters, 2007, 77, 17003.	2.0	49
59	Conditions for magnetism in Pu-based systems. Journal of Alloys and Compounds, 2007, 444-445, 88-92.	5.5	8
60	Ordering effects in diluted magnetic semiconductors. Phase Transitions, 2007, 80, 333-350.	1.3	5
61	Conditions for magnetism in Pu systems. Journal of Magnetism and Magnetic Materials, 2007, 310, e82-e84.	2.3	0
62	Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt. Physical Review B, 2006, 74, .	3.2	36
63	Nature of non-magnetic strongly-correlated state in Î'-plutonium. Europhysics Letters, 2006, 74, 479-485.	2.0	50
64	Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philosophical Magazine, 2006, 86, 1713-1752.	1.6	127
65	Electronic structure and nonmagnetic character ofl´â^'Puâ^'Amalloys. Physical Review B, 2006, 73, .	3.2	56
66	Screening, charge distribution, and electron correlations in metallic alloys. Physical Review B, 2006, 74, .	3.2	7
67	Ab-Initio Study of Diluted Magnetic Semiconductors. , 2005, , 277-293.		1
68	Phase Stability and Ordering in (Ga,Mn)As Alloys. , 2005, , 87-97.		0
69	Magnetic properties and disorder effects in diluted magnetic semiconductors. Physical Review B, 2005, 72, .	3.2	57
70	Dynamical correlations in multiorbital Hubbard models: fluctuation exchange approximations. Journal of Physics Condensed Matter, 2005, 17, 61-74.	1.8	26
71	Coulomb- U and magnetic-moment collapse in δ-Pu. Europhysics Letters, 2005, 69, 588-594.	2.0	147
72	Application of ab initioand CALPHAD thermodynamics to Mo-Ta-W alloys. Physical Review B, 2005, 71, .	3.2	65

#	Article	IF	Citations
73	Residual resistivity of diluted III–V magnetic semiconductors. Journal of Physics Condensed Matter, 2004, 16, S5607-S5614.	1.8	24
74	Exchange interactions and critical temperatures in diluted magnetic semiconductors. Journal of Physics Condensed Matter, 2004, 16, S5571-S5578.	1.8	12
75	Origin of the negative giant magnetoresistance effect in Co1â^'xCrx/Cu/Co(111) trilayers. Physical Review B, 2004, 69, .	3.2	11
76	Electronic structure and transport properties of CrAsâ • GaAsâ • CrAstrilayers from first principles theory. Physical Review B, 2004, 70, .	3.2	13
77	Frustration and long-range behavior of the exchange interactions in AuFe spin-glass alloys. Physical Review B, 2004, 70, .	3.2	20
78	Electronic and phase stability properties of V–X (X = Pd, Rh, Ru) alloys. Journal of Physics Condensed Matter, 2004, 16, 5615-5630.	1.8	2
79	Residual resistivity of (Ga,Mn)As alloys from ab initio calculations. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1987-1988.	2.3	2
80	Curie temperatures and exchange interactions in diluted group-IV magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1995-1996.	2.3	1
81	Electronic structure and magnetism of diluted magnetic semiconductors. Journal of Physics Condensed Matter, 2004, 16, S5481-S5489.	1.8	19
82	Coulomb correlation effects on the electronic structure of III-V diluted magnetic semiconductors. Physical Review B, 2004, 69, .	3.2	63
83	Phase stability and ordering in diluted magnetic Ill–V semiconductors. Philosophical Magazine, 2004, 84, 1889-1905.	1.6	7
84	Exchange interactions in III-V and group-IV diluted magnetic semiconductors. Physical Review B, 2004, 69, .	3.2	283
85	Magnetic Percolation in Diluted Magnetic Semiconductors. Physical Review Letters, 2004, 93, 137202.	7.8	263
86	Compositional Dependence of the Formation Energies of Substitutional and Interstitial Mn in Partially Compensated (Ga,Mn)As. Acta Physica Polonica A, 2004, 105, 637-644.	0.5	10
87	Ab Initio Study of Curie Temperatures of Diluted Magnetic Semiconductors. Journal of Superconductivity and Novel Magnetism, 2003, 16, 119-122.	0.5	25
88	Ab initio theory of exchange interactions in itinerant magnets. Physica Status Solidi (B): Basic Research, 2003, 236, 318-324.	1.5	22
89	Pressure Dependence of Magnetic States of UGe2. Materials Research Society Symposia Proceedings, 2003, 802, 197.	0.1	1
90	Electron transport in magnetic multilayers: Effect of disorder. Physical Review B, 2002, 65, .	3.2	27

#	Article	IF	Citations
91	Effects of resonant interface states on tunneling magnetoresistance. Physical Review B, 2002, 65, .	3.2	130
92	Exchange interactions in random magnetic overlayers. Surface Science, 2002, 507-510, 567-572.	1.9	2
93	Aspects of magnetotunnelling drawn from <i>ab-initio</i> type calculations. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 1027-1045.	0.6	5
94	Perpendicular transport in layered magnetic systems: ab initio study. Computational Materials Science, 2002, 25, 584-589.	3.0	3
95	Interatomic electron transport by semiempirical andab initiotight-binding approaches. Physical Review B, 2002, 65, .	3.2	85
96	Importance of complex band structure and resonant states for tunneling. Journal of Magnetism and Magnetic Materials, 2002, 240, 108-113.	2.3	25
97	Ab initio theory of transport in FeRh-based natural magnetic multilayers. Journal of Magnetism and Magnetic Materials, 2002, 240, 162-164.	2.3	6
98	Ab initio theory of perpendicular transport in layered magnetic systems. Journal of Magnetism and Magnetic Materials, 2002, 240, 177-179.	2.3	3
99	Oscillatory Curie temperature of 2D-ferromagnets. Journal of Magnetism and Magnetic Materials, 2002, 240, 346-348.	2.3	4
100	Multiband Hubbard Hamiltonians with exchange: single-channel approximations. Physica B: Condensed Matter, 2002, 312-313, 519-521.	2.7	3
101	Title is missing!. European Physical Journal D, 2002, 52, 203-208.	0.4	5
102	Title is missing!. European Physical Journal D, 2002, 52, 215-218.	0.4	4
103	Correlated Doping in Semiconductors: the Role of Donors in III-V Diluted Magnetic Semiconductors. Acta Physica Polonica A, 2002, 102, 673-678.	0.5	12
104	Ab initiocalculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Physical Review B, 2001, 64, .	3.2	479
105	Magnetoresistance in domain walls: effect of randomness. Surface Science, 2001, 482-485, 1107-1112.	1.9	16
106	Ab initiotheory of the interlayer exchange coupling in random metallic systems. Journal of Physics Condensed Matter, 2001, 13, 8539-8549.	1.8	3
107	Ordering and segregation inXPtâ€,(X=V, Cu, and Au) random alloys. Physical Review B, 2001, 64, .	3.2	11
108	Interface resistance of disordered magnetic multilayers. Physical Review B, 2001, 63, .	3.2	107

#	Article	IF	Citations
109	First-principles study of stability and local order in substitutional Ta-W alloys. Physical Review B, 2001, 64, .	3.2	40
110	The influence of defects on electrical transport in magnetic multilayers. Jom, 2000, 52, 29-32.	1.9	0
111	Oscillatory Curie Temperature of Two-Dimensional Ferromagnets. Physical Review Letters, 2000, 85, 5424-5427.	7.8	109
112	Ab initiotheory of perpendicular magnetotransport in metallic multilayers. Physical Review B, 2000, 62, 15084-15095.	3.2	94
113	The CPP transport in metallic magnetic multilayers. Surface Science, 2000, 454-456, 918-924.	1.9	9
114	Temperature dependence of the interlayer exchange coupling in magnetic multilayers: Anab initioapproach. Physical Review B, 1999, 60, 9588-9595.	3.2	21
115	On the orientational dependence of giant magnetoresistance. European Physical Journal B, 1999, 9, 245-250.	1.5	13
116	Ab-initio theory of the CPP-magnetoconductance. European Physical Journal D, 1999, 49, 1583-1589.	0.4	7
117	Dynamical electron correlations in weakly interacting systems: TB-LMTO approach to metals and random alloys. Physical Review B, 1999, 60, 15664-15673.	3.2	18
118	Theory of surface segregation in metallic alloys: The generalized perturbation method. Computational Materials Science, 1999, 15, 144-168.	3.0	25
119	Disordered Alloys and Their Surfaces: The Coherent Potential Approximation. , 1999, , 349-378.		8
120	Ab Initio Theory of the Interlayer Exchange Coupling. , 1999, , 313-346.		3
121	Dynamical Electron Correlations in Metals: Tb-Lmto and Multiband Hubbard Hamiltonian., 1999,, 273-284.		3
122	Oscillatory behavior of interface exchange coupling caused by finite caps of variable thickness. Computational Materials Science, 1998, 10, 188-197.	3.0	6
123	Invar behavior of disorderedfccâ^'FexPt1â^'xalloys. Physical Review B, 1998, 58, 4341-4344.	3.2	43
124	Electronic structure of random binary alloys beyond the single-site approximation. Physical Review B, 1998, 58, 8355-8361.	3.2	4
125	The combined effect of temperature and disorder on interlayer exchange coupling in magnetic multilayers. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 78, 571-575.	0.6	2
126	Theoretical study of ordering in Fe-Al alloys based on a density-functional generalized-perturbation method. Physical Review B, 1997, 55, 8184-8193.	3.2	33

#	Article	IF	Citations
127	Amplitude and Phase of the Oscillatory Exchange Coupling between Fe-Co-Ni Alloy Layers across a Cu Spacer Layer. Physical Review Letters, 1997, 78, 358-361.	7.8	18
128	Interlayer exchange coupling: Effect of the cap. Physical Review B, 1997, 56, 8919-8927.	3.2	28
129	Effect of Cap-Layers on Interlayer Exchange Coupling. Materials Research Society Symposia Proceedings, 1997, 475, 575.	0.1	2
130	Effective Interatomic Interactions VIA The TB-LMTO Method. Materials Research Society Symposia Proceedings, 1997, 491, 65.	0.1	2
131	Interlayer exchange coupling: Effect of alloying. Computational Materials Science, 1997, 8, 87-91.	3.0	2
132	Interlayer exchange coupling through ordered and disordered alloy spacers. Journal of Magnetism and Magnetic Materials, 1997, 165, 128-133.	2.3	16
133	Theory of Surface Segregation: Self-Consistent Determination of the Concentration Profile. , 1997, , 133-138.		2
134	Analysis of the Effective Interatomic Interactions in Metallic Alloys., 1997,, 39-44.		1
135	Interlayer Exchange Coupling: Effect of Alloying. Acta Physica Polonica A, 1997, 91, 15-25.	0.5	2
136	Interlayer magnetic coupling: Effect of alloying in the spacer. Physical Review B, 1996, 54, R3738-R3741.	3.2	29
137	Interlayer magnetic coupling: Effect of disorder in spacer. Journal of Magnetism and Magnetic Materials, 1996, 156, 245-246.	2.3	3
138	Ab-initio calculations of the electronic and atomic structure of solids and their surfaces. Computer Physics Communications, 1996, 97, 111-123.	7.5	10
139	Ordering tendencies in fe-al alloys in magnetic and non-magnetic models. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 237-241.	3.5	6
140	Reformulation of the Korringa - Kohn - Rostoker coherent potential approximation for the treatment of space-filling cell potentials and charge-transfer effects. Journal of Physics Condensed Matter, 1996, 8, 7869-7881.	1.8	10
141	New Type of Oscillatory Exchange Coupling Induced by Ordering in the Magnetic Layers. Physical Review Letters, 1996, 76, 3834-3837.	7.8	11
142	Interlayer magnetic coupling: The torque method. Physical Review B, 1996, 53, 15036-15044.	3.2	35
143	Ab initiotheory of surface segregation: Self-consistent determination of the concentration profile. Physical Review B, 1996, 54, 8202-8212.	3.2	20
144	Electronic structure and magnetic properties of random alloys: Fully relativistic spin-polarized linear muffin-tin-orbital method. Physical Review B, 1996, 54, 1610-1621.	3. 2	34

#	Article	IF	Citations
145	Interlayer Exchange Coupling: The Effect of Substitutional Disorder. Physical Review Letters, 1996, 76, 4254-4257.	7.8	53
146	Interlayer magnetic coupling: Effect of interface roughness. Physical Review B, 1996, 53, 5125-5128.	3.2	78
147	Charge-transfer effects in disordered alloys: the test case of Al - Li alloys. Journal of Physics Condensed Matter, 1996, 8, 7883-7898.	1.8	8
148	One, two and three-body features in Auger CVV spectra. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 151-155.	1.7	14
149	Ab-initio theory of magnetic coupling of interfaces. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 511-512.	2.3	2
150	Ferromagnetism of Imperfect Ultrathin Ru and Rh Films on a Ag(001) Substrate. Physical Review Letters, 1995, 74, 2551-2554.	7.8	47
151	The electronic structure of a model bimetallic catalyst: symmetry-resolved density of states at ΓlgG for Cu/Ru(111). Surface Science, 1995, 331-333, 716-722.	1.9	1
152	The Sequence of Ligand Reductions in Heteroleptic Ruthenium-Diimine Complexes: Calculation of Redox Potentials as a Diagnostic Tool. Inorganic Chemistry, 1995, 34, 6008-6014.	4.0	13
153	Phase diagram of the Cu-Pd surface alloy: A first-principles calculation. Physical Review B, 1995, 51, 17910-17915.	3.2	12
154	Screening and correlation effects in CW Auger spectra of transition metals. Journal of Physics Condensed Matter, 1994, 6, 8549-8564.	1.8	10
155	Relativistic electronic structure of random alloys and their surfaces by linear band-structure methods. Physical Review B, 1994, 50, 7903-7914.	3.2	30
156	Magnetism-induced ordering in two and three dimensions. Physical Review B, 1994, 50, 9603-9606.	3.2	26
157	Itinerant magnetism of disordered Fe-Co and Ni-Cu alloys in two and three dimensions. Physical Review B, 1994, 49, 3352-3362.	3.2	79
158	Magnetic coupling of interfaces: A surface-Green's-function approach. Physical Review B, 1994, 50, 16105-16108.	3.2	39
159	Electronic properties of random magnetic surfaces. Progress in Surface Science, 1994, 46, 159-175.	8.3	3
160	Electronic and structural properties of Cu-Au alloys. Physical Review B, 1994, 49, 13366-13372.	3.2	27
161	Relativistic Spin-polarized Multiple Scattering. , 1994, , 413-421.		0
162	Self-consistent Green's-function method for surfaces of random alloys. Physical Review B, 1993, 47, 16525-16531.	3.2	44

#	Article	IF	CITATIONS
163	Moment expansion of the two-particle Green function for the Hubbard Hamiltonian. Journal of Physics Condensed Matter, 1993, 5, 171-176.	1.8	2
164	Electronic structure of random Ag-Pd and Ag-vacancy overlayers on an fcc Pd(001) substrate. Physical Review B, 1993, 48, 1870-1876.	3.2	11
165	First-principles study of surface segregation in Cu-Ni alloys. Physical Review B, 1993, 48, 2704-2710.	3.2	54
166	Two-particle excitations of the Hubbard Hamiltonian: alloy analogy solution. Journal of Physics Condensed Matter, 1992, 4, 4251-4259.	1.8	4
167	Effective interatomic interactions in inhomogeneous semi-infinite systems. Physical Review B, 1992, 45, 14328-14334.	3.2	49
168	Origins of surface alloy formation: $Cu(001)c(2\tilde{A}-2)$ -Pd as a case study. Physical Review Letters, 1992, 69, 308-311.	7.8	47
169	Self-consistent Green's-function method for random overlayers. Physical Review B, 1992, 46, 4222-4228.	3.2	53
170	Auger Electron Spectra of Disordered Metallic Alloys. Physica Scripta, 1992, T41, 7-11.	2.5	2
171	Effective Cluster Interactions at Disordered Surfaces. Materials Research Society Symposia Proceedings, 1991, 253, 369.	0.1	0
172	Electronic structure in random hexagonal close-packed transition-metal alloys by the tight-binding linear-muffin-tin-orbital coherent-potential method. Physical Review B, 1991, 43, 4622-4628.	3.2	4
173	Effective Coulomb interaction in metallic 3dsystems: Comparison of theory and experiment for Mn in Ag. Physical Review B, 1991, 44, 3518-3525.	3.2	14
174	Electronic structure of disordered overlayers on metal substrates. Physical Review B, 1991, 44, 4068-4071.	3. 2	17
175	Electronic properties of surfaces of disordered alloys. Physical Review B, 1991, 44, 6410-6415.	3.2	32
176	t-J MODEL FOR TRIPLET HOLES. International Journal of Modern Physics B, 1991, 05, 131-142.	2.0	3
177	A structural model of hydrogenated amorphous silicon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 62, 271-287.	0.6	3
178	Meanâ€Field Solution of Strongly Correlated Systems Using Hubbard Atomic Operators. Hubbard Model with Infinite <i>U</i> . Physica Status Solidi (B): Basic Research, 1990, 157, 635-639.	1.5	0
179	Electronic structure of amorphous GeS. Solid State Communications, 1990, 73, 163-166.	1.9	2
180	Electronic structure of random alloys by the linear band-structure methods. Physical Review B, 1990, 41, 7515-7528.	3.2	173

#	Article	IF	Citations
181	First-principles calculations of electronic structure in random hcp alloys: A Ru-Re example. Physical Review B, 1990, 41, 10459-10462.	3.2	6
182	Effective Ising Hamiltonian for Surfaces of Metallic Alloys. NATO ASI Series Series B: Physics, 1990, , 355-360.	0.2	0
183	Electronic structure of random semiconductor alloys by the tight-binding linear muffin-tin orbital method. Physical Review B, 1989, 40, 10029-10032.	3.2	23
184	Auger spectra of transition metals: a solution for the multi-band model. Journal of Physics Condensed Matter, 1989, 1, 4783-4793.	1.8	11
185	The spectrum of two-particle excitations of the Hubbard Hamiltonian. Journal of Physics Condensed Matter, 1989, 1, 4773-4782.	1.8	13
186	The electronic structure of bcc-based random solid solutions of transition metals. European Physical Journal B, 1989, 73, 489-493.	1.5	5
187	Approximate treatment of charge selfconsistency and lattice relaxations in random transition metal alloys: Application to CuPd system. Solid State Communications, 1989, 70, 577-580.	1.9	37
188	On the calculation of the surface Green function by the tight-binding linear muffin-tin orbital method. Journal of Physics Condensed Matter, 1989, 1, 9893-9897.	1.8	69
189	Impurity Auger Spectra. Host Crystal with Unfilled Valence Band. Physica Status Solidi (B): Basic Research, 1988, 146, 597-604.	1.5	1
190	Theory of Auger Spectra from Alloys with Partially Filled Narrow Bands. Physica Status Solidi (B): Basic Research, 1988, 147, 215-222.	1.5	2
191	The Electronic Structure of Palladiumâ€Noble Metal Alloys. Physica Status Solidi (B): Basic Research, 1988, 148, K23.	1.5	9
192	Electronic structure of random non-isocoric transition metal alloys. Solid State Communications, 1988, 65, 613-616.	1.9	10
193	Structural models of amorphous GeS. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1988, 58, 303-317.	0.6	4
194	Atomic and electronic structure of a-SiHx based on the large-scale CRN model. Journal of Non-Crystalline Solids, 1987, 90, 103-106.	3.1	3
195	Electronic properties of FCC- and BCC-based random AgCd alloys. Journal of Physics F: Metal Physics, 1987, 17, L283-L287.	1.6	2
196	Alloy Analogy for the Multiâ€Band Hubbard Hamiltonian. Physica Status Solidi (B): Basic Research, 1987, 144, 701-707.	1.5	1
197	A model calculation of redox potential sequence of systems with mutually interacting redox centers: M(bpy)(2-n)+3 systems. Chemical Physics, 1987, 118, 313-323.	1.9	35
198	Canonical description of electron states in random alloys. Physical Review B, 1987, 35, 2487-2489.	3.2	96

#	Article	IF	CITATIONS
199	Structural models of the oxide layer on the Si(111) surface. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1986, 54, 61-70.	0.6	2
200	The Theory of Auger Spectra from Alloys. The Effect of Electron Correlations in Partially Filled Narrow Bands. Physica Status Solidi (B): Basic Research, 1985, 127, 611-619.	1.5	5
201	CI treatment of charged TCNQ clusters in a localized basis: Connection with the extended Hubbard model. Chemical Physics, 1985, 100, 65-78.	1.9	1
202	Local environment effects in electronic structure: a-GeS contrasted to a-SiHx. Journal of Non-Crystalline Solids, 1985, 77-78, 87-90.	3.1	4
203	The Auger spectra of metals: effect of electron correlations in partially filled narrow bands. Journal of Physics F: Metal Physics, 1984, 14, 2443-2453.	1.6	41
204	Electron correlations in alloys of simple and transition metals. Journal of Physics and Chemistry of Solids, 1984, 45, 267-274.	4.0	0
205	Electronic excitations in doubly charged TCNQ dimers, trimers and tetramers. Chemical Physics, 1984, 89, 361-370.	1.9	6
206	The Auger Spectra from Alloys Effect of Partial Longâ€Range Order. Physica Status Solidi (B): Basic Research, 1984, 124, 179-189.	1.5	3
207	Secondâ€order perturbation treatment of correlations in transition metal alloys. Physica Status Solidi (B): Basic Research, 1983, 116, 119-128.	1.5	6
208	CNDO/S-CI calculation of Hubbard parameters for doubly charged TCNQ tetramer. European Physical Journal D, 1982, 32, 39-48.	0.4	2
209	The theory of the impurity Auger spectrum: The generalized Wolff-Clogston model. European Physical Journal D, 1982, 32, 108-115.	0.4	3
210	Theory of auger spectra from disordered alloys the effect of electron correlations in filled narrow bands. Physica Status Solidi (B): Basic Research, 1982, 114, 627-635.	1.5	9
211	Theory of the Auger Spectra of Narrowâ€Band Metals with Impurities. Physica Status Solidi (B): Basic Research, 1981, 108, 683-692.	1.5	18
212	Correlation Effects on Adatoms: The Selfâ€Consistent Tâ€Matrix Approximation. Physica Status Solidi (B): Basic Research, 1980, 97, K57.	1.5	6
213	Correlation Effects on Adatoms: The Influence of sâ€d Hybridization in Substrate. Physica Status Solidi (B): Basic Research, 1980, 100, K181.	1.5	0
214	Electron-electron correlation in disordered binary alloys: The T-matrix approximation. Journal of Physics and Chemistry of Solids, 1979, 40, 393-403.	4.0	22
215	The Tâ€matrix approximation for the anderson model: A selfâ€consistent solution. Physica Status Solidi (B): Basic Research, 1978, 86, K89.	1.5	3
216	Evaluation of the path integrals for non-interacting electron gas in a random gaussian potential. European Physical Journal D, 1976, 26, 967-975.	0.4	2

#	Article	IF	CITATIONS
217	Correlated motion of a pair of electrons in a random alloy. Journal of Physics and Chemistry of Solids, 1976, 37, 655-668.	4.0	16
218	The coherent pseudopotential approximation. Journal of Physics F: Metal Physics, 1976, 6, 2247-2256.	1.6	4
219	Off-diagonal disorder by projection operator formalism. Solid State Communications, 1975, 17, 643-645.	1.9	2
220	Ferromagnetism for the hubbard model in the alloy analogy approximation. Physica Status Solidi (B): Basic Research, 1975, 68, 207-212.	1.5	10
221	Exchange Interactions and Magnetic Percolation in Diluted Magnetic Semiconductors., 0,, 131-145.		1