Xuyu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566716/publications.pdf

Version: 2024-02-01

53	6,864	24	50
papers	citations	h-index	g-index
53	53	53	9996
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The Crohn Disease-associated ATG16L1 ^{T300A} polymorphism regulates inflammatory responses by modulating TLR- and NLR-mediated signaling. Autophagy, 2022, 18, 2561-2575.	9.1	17
2	Ex-TFRs: A Missing Piece of the SLE Puzzle?. Frontiers in Immunology, 2021, 12, 662305.	4.8	2
3	Editorial: Regulators of a Regulator: Post-Transcriptional Regulation in Tregs. Frontiers in Immunology, 2021, 12, 699911.	4.8	O
4	A Split-Cre system designed to detect simultaneous expression of two genes based on SpyTag/SpyCatcher conjugation and Split-GFP dimerization. Journal of Biological Chemistry, 2021, 297, 101119.	3.4	4
5	Induction of Foxp3 and activation of Tregs by HSP gp96 for treatment of autoimmune diseases. IScience, 2021, 24, 103445.	4.1	11
6	A wave of Foxp3+ regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cellular and Molecular Immunology, 2020, 17, 507-518.	10.5	21
7	A GPR174–CCL21 module imparts sexual dimorphism to humoral immunity. Nature, 2020, 577, 416-420.	27.8	65
8	Foxp3 Instability Helps tTregs Distinguish Self and Non-self. Frontiers in Immunology, 2019, 10, 2226.	4.8	19
9	Noc4L-Mediated Ribosome Biogenesis Controls Activation of Regulatory and Conventional T Cells. Cell Reports, 2019, 27, 1205-1220.e4.	6.4	15
10	E-protein regulatory network links TCR signaling to effector Treg cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4471-4480.	7.1	11
11	Down-regulated Treg cells in exacerbated periodontal disease during pregnancy. International Immunopharmacology, 2019, 69, 299-306.	3.8	16
12	B Cell–Intrinsic MyD88 Signaling Promotes Initial Cell Proliferation and Differentiation To Enhance the Germinal Center Response to a Virus-like Particle. Journal of Immunology, 2018, 200, 937-948.	0.8	36
13	MicroRNAs in regulatory T cells. Cancer Letters, 2018, 423, 80-85.	7.2	3
14	B Cells Are the Dominant Antigen-Presenting Cells that Activate Naive CD4+ T Cells upon Immunization with a Virus-Derived Nanoparticle Antigen. Immunity, 2018, 49, 695-708.e4.	14.3	185
15	Thymus-derived Foxp3+ regulatory T cells upregulate ROR \hat{I}^3 t expression under inflammatory conditions. Journal of Molecular Medicine, 2018, 96, 1387-1394.	3.9	18
16	Activation and Functional Specialization of Regulatory T Cells Lead to the Generation of Foxp3 Instability. Journal of Immunology, 2017, 198, 2612-2625.	0.8	48
17	Interaction of factor H-binding protein of <i>Streptococcus suis </i> with globotria osylceramide promotes the development of meningitis. Virulence, 2017, 8, 1290-1302.	4.4	27
18	Reciprocal Expression of IL-35 and IL-10 Defines Two Distinct Effector Treg Subsets that Are Required for Maintenance of Immune Tolerance. Cell Reports, 2017, 21, 1853-1869.	6.4	129

#	Article	IF	Citations
19	MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway. PLoS ONE, 2016, 11, e0158432.	2.5	25
20	Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters. Synthetic and Systems Biotechnology, 2016, 1, 158-168.	3.7	31
21	Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Scientific Reports, 2016, 6, 33612.	3.3	15
22	A Novel Transgenic Mouse Line for Tracing MicroRNA-155-5p Activity In Vivo. PLoS ONE, 2015, 10, e0128198.	2.5	1
23	Regulatory T cells turn pathogenic. Cellular and Molecular Immunology, 2015, 12, 525-532.	10.5	42
24	Constitutive Activation of MEK1 Promotes Treg Cell Instability in Vivo. Journal of Biological Chemistry, 2014, 289, 35139-35148.	3.4	19
25	Tyrosine 201 of the cytoplasmic tail of <scp>CTLA</scp> â€4 critically affects <scp>T</scp> regulatory cell suppressive function. European Journal of Immunology, 2014, 44, 1737-1746.	2.9	13
26	Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein and Cell, 2014, 5, 261-264.	11.0	20
27	Identification of hepatitis B virus-specific CTL epitopes presented by HLA-Aâ^—33:03 in peripheral blood mononuclear cells from patients and transgenic mice. Biochemical and Biophysical Research Communications, 2014, 449, 135-140.	2.1	3
28	Characterization of human $\hat{l}\pm\hat{l}^2TCR$ repertoire and discovery of D-D fusion in $TCR\hat{l}^2$ chains. Protein and Cell, 2014, 5, 603-615.	11.0	27
29	Self-antigen-Driven Activation Induces Instability of Regulatory T Cells during an Inflammatory Autoimmune Response. Immunity, 2013, 39, 949-962.	14.3	326
30	The B7-Independent Isoform of CTLA-4 Functions To Regulate Autoimmune Diabetes. Journal of Immunology, 2013, 190, 961-969.	0.8	36
31	DGCR8-Mediated Production of Canonical Micrornas Is Critical for Regulatory T Cell Function and Stability. PLoS ONE, 2013, 8, e66282.	2.5	22
32	Effect of Licochalcone A on Growth and Properties of Streptococcus suis. PLoS ONE, 2013, 8, e67728.	2.5	17
33	Induction of Regulatory T Cells by High-Dose gp96 Suppresses Murine Liver Immune Hyperactivation. PLoS ONE, 2013, 8, e68997.	2.5	16
34	Narrow Groove and Restricted Anchors of MHC Class I Molecule BF2*0401 Plus Peptide Transporter Restriction Can Explain Disease Susceptibility of B4 Chickens. Journal of Immunology, 2012, 189, 4478-4487.	0.8	54
35	MicroRNA 10a Marks Regulatory T Cells. PLoS ONE, 2012, 7, e36684.	2.5	94
36	Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology, 2011, 12, 898-907.	14.5	179

#	Article	IF	CITATIONS
37	Plasticity of CD4+ FoxP3+ T cells. Current Opinion in Immunology, 2009, 21, 281-285.	5. 5	287
38	Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunology, 2009, 10 , $1000-1007$.	14.5	1,251
39	Deletional Tolerance Mediated by Extrathymic Aire-Expressing Cells. Science, 2008, 321, 843-847.	12.6	421
40	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	8.5	482
41	CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. Journal of Experimental Medicine, 2006, 203, 1701-1711.	8.5	2,292
42	Induction of surface CCR4 and its functionality in mouse Th2 cells is regulated differently during Th2 development. Journal of Leukocyte Biology, 2005, 78, 753-761.	3.3	21
43	In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clinical Immunology, 2005, 115, 3-9.	3.2	162
44	The capacity of the natural ligands for CD28 to drive IL-4 expression in naive and antigen-primed CD4+ and CD8+ T cells. International Immunology, 2004, 17, 73-83.	4.0	10
45	Anti–HER-2/neu Immune Responses Are Induced before the Development of Clinical Tumors but Declined following Tumorigenesis in HER-2/neu Transgenic Mice. Cancer Research, 2004, 64, 7588-7595.	0.9	16
46	A mechanism underlying STAT4-mediated up-regulation of IFN-Â induction inTCR-triggered T cells. International Immunology, 2004, 16, 295-302.	4.0	30
47	Induction of Tumor Regression by Administration of B7-Ig Fusion Proteins: Mediation by Type 2 CD8+ T Cells and Dependence on IL-4 Production. Journal of Immunology, 2004, 172, 1347-1354.	0.8	15
48	The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. Journal of Leukocyte Biology, 2003, 73, 273-280.	3.3	105
49	Molecular Mechanisms Underlying Differential Contribution of CD28 Versus Non-CD28 Costimulatory Molecules to IL-2 Promoter Activation. Journal of Immunology, 2002, 168, 3847-3854.	0.8	45
50	Reversible CD8 expression induced by common cytokine receptor \hat{I}^3 chain-dependent cytokines in a cloned CD4+ Th1 cell line. International Immunology, 2002, 14, 259-266.	4.0	0
51	Non-CD28 Costimulatory Molecules Present in T Cell Rafts Induce T Cell Costimulation by Enhancing the Association of TCR with Rafts. Journal of Immunology, 2000, 164, 1251-1259.	0.8	141
52	CD5 Costimulation Up-Regulates the Signaling to Extracellular Signal-Regulated Kinase Activation in CD4+CD8+ Thymocytes and Supports Their Differentiation to the CD4 Lineage. Journal of Immunology, 2000, 164, 1260-1268.	0.8	19
53	Noc4L Dependent Ribosome Biogenesis Controls Treg Activation. SSRN Electronic Journal, 0, , .	0.4	0