Ying-Shi Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566702/publications.pdf Version: 2024-02-01

VINC-SHI CHAN

#	Article	IF	CITATIONS
1	Interfacial assembly of metallic nanomembranes for highly stretchable conductors. Matter, 2022, 5, 15-17.	10.0	6
2	Kirigamiâ€Inspired Stretchable Conjugated Electronics. Advanced Electronic Materials, 2020, 6, 1900929.	5.1	18
3	Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nature Communications, 2020, 11, 3823.	12.8	196
4	Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Science Advances, 2020, 6, .	10.3	54
5	Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy, 2020, 75, 105044.	16.0	27
6	Magnetoelectric bistability of molecular ferroic solids. Journal of Materials Chemistry C, 2019, 7, 9154-9158.	5.5	1
7	Freestanding Polymer Assembly Conductor by Contact-Free Annealing. ACS Applied Polymer Materials, 2019, 1, 3196-3202.	4.4	0
8	Alkaliâ€Metalâ€Intercalated Percolation Network Regulates Selfâ€Assembled Electronic Aromatic Molecules. Advanced Materials, 2019, 31, e1807178.	21.0	11
9	A highly conductive, transparent molecular charge-transfer salt with reversible lithiation. Chemical Communications, 2019, 55, 7179-7182.	4.1	12
10	Superconductors: Alkaliâ€Metalâ€Intercalated Percolation Network Regulates Selfâ€Assembled Electronic Aromatic Molecules (Adv. Mater. 11/2019). Advanced Materials, 2019, 31, 1970079.	21.0	1
11	Exciton–dipole coupling in two-dimensional rubrene assembly sensors. Nanoscale, 2019, 11, 5640-5645.	5.6	5
12	Strongly Correlated Aromatic Molecular Conductor. Small, 2019, 15, e1900299.	10.0	4
13	Alkali-Metal-Intercalated Aromatic Hydrocarbon Conductors. ACS Applied Nano Materials, 2019, 2, 1140-1145.	5.0	5
14	Magnetoelectric Radical Hydrocarbons. Advanced Materials, 2019, 31, e1806263.	21.0	4
15	Magnetoelectrics: Magnetoelectric Radical Hydrocarbons (Adv. Mater. 3/2019). Advanced Materials, 2019, 31, 1970019.	21.0	0
16	Kirigamiâ€Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability. Advanced Materials, 2018, 30, e1706390.	21.0	94
17	Kirigami-Inspired Conducting Polymer Thermoelectrics from Electrostatic Recognition Driven Assembly. ACS Nano, 2018, 12, 7967-7973.	14.6	23
18	Rational design of molecular crystals for enhanced charge transfer properties. Journal of Materials Chemistry C, 2017, 5, 12338-12342.	5.5	6

YING-SHI GUAN

#	Article	IF	CITATIONS
19	Ambipolar organic field-effect transistors based on diketopyrrolopyrrole derivatives containing different π-conjugating spacers. Journal of Materials Chemistry C, 2016, 4, 4470-4477.	5.5	37
20	Flexible nâ€Type Highâ€Performance Thermoelectric Thin Films of Poly(nickelâ€ethylenetetrathiolate) Prepared by an Electrochemical Method. Advanced Materials, 2016, 28, 3351-3358.	21.0	206
21	π-Conjugated dithieno[3,2-b:2′,3′-d]pyrrole (DTP) oligomers for organic thin-film transistors. RSC Advances, 2016, 6, 4872-4876.	3.6	13
22	Donor–acceptor co-assembled supramolecular nanofibers with high and well-balanced ambipolar charge transport properties under ambient conditions. Chemical Communications, 2016, 52, 4648-4651.	4.1	18
23	Thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules as Solution-Processable and Air-Stable Organic Semiconductors: Tuning of the Length and Branching Position of the Alkyl Side Chain toward a High-Performance n-Channel Organic Field-Effect Transistor. ACS Applied Materials &: Interfaces. 2015. 7. 15978-15987.	8.0	93
24	Single-bundle nanofiber based OFETs fabricated from a cyclic conjugated organogelator with high field-effect mobility and high photoresponsivity. Chemical Communications, 2015, 51, 12182-12184.	4.1	34
25	A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. RSC Advances, 2014, 4, 8360.	3.6	96
26	A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione. Chemical Communications, 2013, 49, 1294.	4.1	197
27	A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta, 2013, 108, 103-108.	5.5	75
28	BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions. Analytica Chimica Acta, 2013, 775, 93-99.	5.4	50
29	BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine. Journal of the American Chemical Society, 2012, 134, 18928-18931.	13.7	820