
Iñigo Lasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation. Journal of Bacteriology, 2001, 183, 2888-2896.	2.2	742
2	The Enterococcal Surface Protein, Esp, Is Involved in <i>Enterococcus faecalis</i> Biofilm Formation. Applied and Environmental Microbiology, 2001, 67, 4538-4545.	3.1	511
3	Genetic analysis ofSalmonella enteritidisbiofilm formation: critical role of cellulose. Molecular Microbiology, 2002, 43, 793-808.	2.5	462
4	Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 2014, 18, 96-104.	5.1	412
5	SarA and not ÏfB is essential for biofilm development by Staphylococcus aureus. Molecular Microbiology, 2003, 48, 1075-1087.	2.5	400
6	Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus. Infection and Immunity, 2004, 72, 2177-2185.	2.2	297
7	Bap: A family of surface proteins involved in biofilm formation. Research in Microbiology, 2006, 157, 99-107.	2.1	282
8	Î ² -Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 2726-2729.	2.2	279
9	BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Molecular Microbiology, 2005, 58, 1322-1339.	2.5	267
10	Protein A-Mediated Multicellular Behavior in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2009, 191, 832-843.	2.2	267
11	Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Molecular Microbiology, 2005, 56, 836-844.	2.5	256
12	Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology (United Kingdom), 2005, 151, 2465-2475.	1.8	243
13	Genome-wide antisense transcription drives mRNA processing in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20172-20177.	7.1	231
14	Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Molecular Microbiology, 2004, 54, 264-277.	2.5	209
15	VirR, a response regulator critical forListeria monocytogenesvirulence. Molecular Microbiology, 2005, 57, 1367-1380.	2.5	184
16	Relevant Role of Fibronectin-Binding Proteins in <i>Staphylococcus aureus</i> Biofilm-Associated Foreign-Body Infections. Infection and Immunity, 2009, 77, 3978-3991.	2.2	183
17	Staphylococcus aureus Develops an Alternative, ica- Independent Biofilm in the Absence of the arlRS Two-Component System. Journal of Bacteriology, 2005, 187, 5318-5329.	2.2	182
18	Amyloid Structures as Biofilm Matrix Scaffolds. Journal of Bacteriology, 2016, 198, 2579-2588.	2.2	175

#	Article	IF	CITATIONS
19	Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature, 2010, 465, 779-782.	27.8	155
20	Biofilm-associated proteins. Comptes Rendus - Biologies, 2006, 329, 849-857.	0.2	147
21	SarA Is an Essential Positive Regulator of Staphylococcus epidermidis Biofilm Development. Journal of Bacteriology, 2005, 187, 2348-2356.	2.2	145
22	Adaptation of <i>Staphylococcus aureus</i> to ruminant and equine hosts involves SaPlâ€carried variants of von Willebrand factorâ€binding protein. Molecular Microbiology, 2010, 77, 1583-1594.	2.5	137
23	Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1234-1238.	7.1	136
24	Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathogens, 2016, 12, e1005711.	4.7	135
25	The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Molecular Microbiology, 1995, 18, 425-436.	2.5	129
26	Proteomic and Functional Analyses Reveal a Unique Lifestyle for <i>Acinetobacter baumannii</i> Biofilms and a Key Role for Histidine Metabolism. Journal of Proteome Research, 2011, 10, 3399-3417.	3.7	126
27	Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO Journal, 1997, 16, 1531-1540.	7.8	124
28	Base Pairing Interaction between 5′- and 3′-UTRs Controls icaR mRNA Translation in Staphylococcus aureus. PLoS Genetics, 2013, 9, e1004001.	3.5	123
29	Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Molecular Microbiology, 2003, 49, 193-210.	2.5	114
30	Expression of the Biofilm-Associated Protein Interferes with Host Protein Receptors of Staphylococcus aureus and Alters the Infective Process. Infection and Immunity, 2002, 70, 3180-3186.	2.2	113
31	Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes and Infection, 2010, 12, 55-64.	1.9	113
32	Role of Staphylococcal Phage and SaPI Integrase in Intra- and Interspecies SaPI Transfer. Journal of Bacteriology, 2007, 189, 5608-5616.	2.2	103
33	<i>Staphylococcus aureus</i> Pathogenicity Island DNA Is Packaged in Particles Composed of Phage Proteins. Journal of Bacteriology, 2008, 190, 2434-2440.	2.2	100
34	Detection and characterization of cerein 7, a new bacteriocin produced byBacillus cereuswith a broad spectrum of activity. FEMS Microbiology Letters, 1999, 178, 337-341.	1.8	99
35	Calcium Inhibits Bap-Dependent Multicellular Behavior in Staphylococcus aureus. Journal of Bacteriology, 2004, 186, 7490-7498.	2.2	97
36	Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology (United Kingdom), 2008, 154, 865-877.	1.8	95

#	Article	IF	CITATIONS
37	Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose. Journal of Bacteriology, 2013, 195, 417-428.	2.2	94
38	SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Molecular Microbiology, 2008, 67, 493-503.	2.5	92
39	Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor. PLoS Pathogens, 2012, 8, e1002843.	4.7	87
40	Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromolecular Bioscience, 2015, 15, 1060-1069.	4.1	87
41	Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7997-8002.	7.1	86
42	SarA Positively Controls Bap-Dependent Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 2005, 187, 5790-5798.	2.2	84
43	Sensory deprivation in Staphylococcus aureus. Nature Communications, 2018, 9, 523.	12.8	83
44	Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin. ACS Nano, 2016, 10, 3443-3452.	14.6	80
45	Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Molecular Microbiology, 1992, 6, 1555-1564.	2.5	77
46	SaPI operon I is required for SaPI packaging and is controlled by LexA. Molecular Microbiology, 2007, 65, 41-50.	2.5	74
47	Towards the identification of the common features of bacterial biofilm development. International Microbiology, 2006, 9, 21-8.	2.4	73
48	Biofilm Matrix Exoproteins Induce a Protective Immune Response against Staphylococcus aureus Biofilm Infection. Infection and Immunity, 2014, 82, 1017-1029.	2.2	67
49	An effort to make sense of antisense transcription in bacteria. RNA Biology, 2012, 9, 1039-1044.	3.1	65
50	Ïf B Regulates IS 256 -Mediated Staphylococcus aureus Biofilm Phenotypic Variation. Journal of Bacteriology, 2007, 189, 2886-2896.	2.2	64
51	Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 2012, 56, 6256-6266.	3.2	63
52	Development of Thermus-Escherichia shuttle vectors and their use for expression of the Clostridium thermocellum celA gene in Thermus thermophilus. Journal of Bacteriology, 1992, 174, 6424-6431.	2.2	60
53	Meat traceability using DNA markers: application to the beef industry. Meat Science, 2002, 61, 367-373.	5.5	60
54	Auranofin efficacy against MDR <i>Streptococcus pneumoniae</i> and <i>Staphylococcus aureus</i> infections. Journal of Antimicrobial Chemotherapy, 2015, 70, 2608-2617.	3.0	60

#	Article	IF	CITATIONS
55	Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl β-1,6 glucosamine specific antibody production using biofilm-embedded bacteria. Vaccine, 2009, 27, 2379-2386.	3.8	58
56	Identification, Characterization, and In Situ Detection of a Fruit-Body-Specific Hydrophobin of <i>Pleurotus ostreatus</i> . Applied and Environmental Microbiology, 1998, 64, 4028-4034.	3.1	58
57	Actin-based bacterial motility: towards a definition of the minimal requirements. Trends in Cell Biology, 1996, 6, 109-114.	7.9	56
58	Salmonella Biofilm Development Depends on the Phosphorylation Status of RcsB. Journal of Bacteriology, 2012, 194, 3708-3722.	2.2	56
59	Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of <i>Enterobacter cloacae</i> and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2007, 51, 3247-3253.	3.2	54
60	Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8128-8132.	7.1	53
61	The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus. Nucleic Acids Research, 2018, 46, 1345-1361.	14.5	44
62	A multifaceted small <scp>RNA</scp> modulates gene expression upon glucose limitation in <i>Staphylococcus aureus</i> . EMBO Journal, 2019, 38, .	7.8	44
63	Control of <i>Staphylococcus aureus</i> pathogenicity island excision. Molecular Microbiology, 2012, 85, 833-845.	2.5	40
64	The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. Npj Biofilms and Microbiomes, 2020, 6, 15.	6.4	40
65	Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiology Letters, 1999, 178, 337-341.	1.8	36
66	ActA is a dimer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10034-10039.	7.1	35
67	Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiology Letters, 1998, 165, 51-57.	1.8	35
68	Horizontal transference of S-layer genes within Thermus thermophilus. Journal of Bacteriology, 1995, 177, 5460-5466.	2.2	34
69	A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 342.	3.5	34
70	Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology (United Kingdom), 2007, 153, 1702-1710.	1.8	33
71	A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria. Nucleic Acids Research, 2013, 41, 7260-7275.	14.5	33
72	Purification and sequencing of cerein 7B, a novel bacteriocin produced byBacillus cereusBc7. FEMS Microbiology Letters, 2006, 254, 108-115.	1.8	32

#	Article	IF	CITATIONS
73	Biofilm switch and immune response determinants at early stages of infection. Trends in Microbiology, 2013, 21, 364-371.	7.7	31
74	Unravelling bacteriophage ϕ11 requirements for packaging and transfer of mobile genetic elements in <i><i><scp>S</scp>taphylococcus aureus</i>. Molecular Microbiology, 2014, 91, 423-437.</i>	2.5	31
75	Biofilm properties in relation to treatment outcome in patients with first-time periprosthetic hip or knee joint infection. Journal of Orthopaedic Translation, 2021, 30, 31-40.	3.9	31
76	RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Research, 2011, 39, 5866-5878.	14.5	30
77	Noncontiguous operon is a genetic organization for coordinating bacterial gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1733-1738.	7.1	30
78	Systematic Reconstruction of the Complete Two-Component Sensorial Network in Staphylococcus aureus. MSystems, 2020, 5, .	3.8	30
79	Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Scientific Reports, 2020, 10, 18968.	3.3	29
80	Cellulose mediates attachment of <i>Salmonella enterica</i> Serovar Typhimurium to tomatoes. Environmental Microbiology Reports, 2011, 3, 569-573.	2.4	24
81	Advances in bacterial transcriptome understanding: From overlapping transcription to the excludon concept. Molecular Microbiology, 2020, 113, 593-602.	2.5	24
82	Ïf ^B Inhibits Poly- <i>N</i> -Acetylglucosamine Exopolysaccharide Synthesis and Biofilm Formation in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2019, 201, .	2.2	23
83	Lysostaphin and clarithromycin: a promising combination for the eradication of Staphylococcus aureus biofilms. International Journal of Antimicrobial Agents, 2011, 37, 585-587.	2.5	22
84	Structural mechanism for modulation of functional amyloid and biofilm formation by Staphylococcal Bap protein switch. EMBO Journal, 2021, 40, e107500.	7.8	22
85	Actin polymerization and bacterial movement. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1402, 217-228.	4.1	20
86	Conditional Mutation of an Essential Putative Glycoprotease Eliminates Autolysis in Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 2734-2742.	2.2	19
87	Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiology Letters, 1998, 165, 51-57.	1.8	18
88	Near-infrared fluorescence imaging as an alternative to bioluminescent bacteria to monitor biomaterial-associated infections. Acta Biomaterialia, 2014, 10, 2935-2944.	8.3	17
89	The impact of two-component sensorial network in staphylococcal speciation. Current Opinion in Microbiology, 2020, 55, 40-47.	5.1	17
90	Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine, 2005, 23, 1491-1501.	3.8	16

#	Article	IF	CITATIONS
91	Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genetics, 2017, 13, e1006816.	3.5	16
92	Fitness Cost Evolution of Natural Plasmids of Staphylococcus aureus. MBio, 2021, 12, .	4.1	16
93	Revisiting Bap Multidomain Protein: More Than Sticking Bacteria Together. Frontiers in Microbiology, 2020, 11, 613581.	3.5	15
94	Biotechnological War against Biofilms. Could Phages Mean the End of Device-Related Infections?. International Journal of Artificial Organs, 2007, 30, 805-812.	1.4	14
95	Biofilm Related Infections: Is There a Place for Conservative Treatment of Port-Related Bloodstream Infections?. International Journal of Artificial Organs, 2006, 29, 379-386.	1.4	13
96	Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine. PLoS ONE, 2016, 11, e0161216.	2.5	13
97	A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs. Veterinary Research, 2020, 51, 3.	3.0	10
98	Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Scientific Reports, 2020, 10, 17939.	3.3	10
99	Overlapping transcription and bacterial RNA removal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2868-2869.	7.1	9
100	Direct laser interference patterning for decreased bacterial attachment. Proceedings of SPIE, 2016, , .	0.8	9
101	Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiology Spectrum, 2022, 10, .	3.0	9
102	Elevated câ€diâ€GMP levels promote biofilm formation and biodesulfurization capacity of <i>Rhodococcus erythropolis</i> . Microbial Biotechnology, 2021, 14, 923-937.	4.2	8
103	Microbiology in the â€~omics era: from the study of single cells to communities and beyond. Current Opinion in Microbiology, 2013, 16, 602-604.	5.1	7
104	Polymicrobial infections: Do bacteria behave differently depending on their neighbours?. Virulence, 2018, 9, 895-897.	4.4	7
105	Experimental Polymorphism Survey in Intergenic Regions of the icaADBCR Locus in Staphylococcus aureus Isolates from Periprosthetic Joint Infections. Microorganisms, 2022, 10, 600.	3.6	7
106	Rebooting Synthetic Phage-Inducible Chromosomal Islands: One Method to Forge Them All. Biodesign Research, 2020, 2020, .	1.9	6
107	P1786 Dispersin B therapy of Staphylococcus aureus experimental port-related bloodstream infection. International Journal of Antimicrobial Agents, 2007, 29, S508.	2.5	5
108	AdrA as a Potential Immunomodulatory Candidate for STING-Mediated Antiviral Therapy That Required Both Type I IFN and TNF-α Production. Journal of Immunology, 2021, 206, 376-385.	0.8	5

#	Article	IF	CITATIONS
109	The Role of ArlRS and VraSR in Regulating Ceftaroline Hypersusceptibility in Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2021, 10, 821.	3.7	5
110	The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice. Veterinary Research, 2012, 43, 31.	3.0	4
111	Regulation of gene expression by non-phosphorylated response regulators. International Microbiology, 2021, 24, 521-529.	2.4	4
112	Differential domain accessibility to monoclonal antibodies in three different morphological assemblies built up by the S-layer protein of Thermus thermophilus HB8. Journal of Bacteriology, 1996, 178, 3654-3657.	2.2	3
113	Wavelet-based detection of transcriptional activity on a novel Staphylococcus aureus tiling microarray. BMC Bioinformatics, 2012, 13, 222.	2.6	3
114	A pyrene-inhibitor fluorescent probe with large Stokes shift for the staining of Aβ1–42, α-synuclein, and amylin amyloid fibrils as well as amyloid-containing Staphylococcus aureus biofilms. Analytical and Bioanalytical Chemistry, 2019, 411, 251-265.	3.7	2
115	Biofilm formation by Salmonella in food processing environments. , 2009, , 226-249.		1
116	Regulation of Heterogenous LexA Expression in Staphylococcus aureus by an Antisense RNA Originating from Transcriptional Read-Through upon Natural Mispairings in the sbrB Intrinsic Terminator. International Journal of Molecular Sciences, 2022, 23, 576.	4.1	1