Luke Zoltan Kelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4873-4887.	4.4	174
2	Running late: testing delayed supermassive black hole growth models against the quasar luminosity function. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5756-5767.	4.4	8
3	kalepy: a Python package for kernel density estimation, sampling and plotting. Journal of Open Source Software, 2021, 6, 2784.	4.6	21
4	Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection. Astrophysical Journal Letters, 2021, 911, L34.	8.3	66
5	The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc. Astrophysical Journal, 2021, 914, 121.	4.5	21
6	Impact of gas-based seeding on supermassive black hole populations at <i>z</i> ≥ 7. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2012-2036.	4.4	5
7	Seeds don't sink: even massive black hole â€~seeds' cannot migrate to galaxy centres efficiently. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1973-1985.	4.4	34
8	Gravitational self-lensing in populations of massive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2524-2536.	4.4	10
9	Massive black hole binary inspiral and spin evolution in a cosmological framework. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2531-2546.	4.4	14
10	The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2021, 252, 4.	7.7	98
11	The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars. Astrophysical Journal, Supplement Series, 2021, 252, 5.	7.7	64
12	Impact of gas spin and Lyman–Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse. Monthly Notices of the Royal Astronomical Society, 2021, 510, 177-196.	4.4	3
13	Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset. Physical Review Letters, 2021, 127, 251302.	7.8	62
14	The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background. Astrophysical Journal Letters, 2021, 923, L22.	8.3	30
15	The effect of differential accretion on the gravitational wave background and the present-day MBH binary population. Monthly Notices of the Royal Astronomical Society, 2020, 498, 537-547.	4.4	20
16	The NANOGrav 11 yr Data Set: Evolution of Gravitational-wave Background Statistics. Astrophysical Journal, 2020, 890, 108.	4.5	28
17	The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory. Astrophysical Journal, 2020, 889, 38.	4.5	36
18	Modeling the Uncertainties of Solar System Ephemerides for Robust Gravitational-wave Searches with Pulsar-timing Arrays. Astrophysical Journal, 2020, 893, 112.	4.5	49

LUKE ZOLTAN KELLEY

#	Article	IF	CITATIONS
19	Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set. Astrophysical Journal, 2020, 900, 102.	4.5	30
20	Forward Modeling of Double Neutron Stars: Insights from Highly Offset Short Gamma-Ray Bursts. Astrophysical Journal, 2020, 904, 190.	4.5	13
21	The NANOGrav 12.5Âyr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophysical Journal Letters, 2020, 905, L34.	8.3	528
22	Basic considerations for the observability of kinematically offset binary AGN. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4065-4077.	4.4	11
23	The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries. Astrophysical Journal, 2019, 880, 116.	4.5	102
24	The astrophysics of nanohertz gravitational waves. Astronomy and Astrophysics Review, 2019, 27, 1.	25.5	166
25	Massive BH binaries as periodically variable AGN. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1579-1594.	4.4	44
26	Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2018, 477, 964-976.	4.4	61
27	Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates. Astrophysical Journal, 2018, 856, 42.	4.5	53
28	An Open Catalog for Supernova Data. Astrophysical Journal, 2017, 835, 64.	4.5	334
29	Massive black hole binary mergers in dynamical galactic environments. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3131-3157.	4.4	127
30	The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4508-4526.	4.4	97
31	Recoiling black holes: prospects for detection and implications of spin alignment. Monthly Notices of the Royal Astronomical Society, 2016, 456, 961-989.	4.4	90
32	Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2744-2760.	4.4	141
33	Tidal disruption and magnetic flux capture: powering a jet from a quiescent black hole. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3919-3938.	4.4	43
34	THE DISTRIBUTION OF COALESCING COMPACT BINARIES IN THE LOCAL UNIVERSE: PROSPECTS FOR GRAVITATIONAL-WAVE OBSERVATIONS. Astrophysical Journal Letters, 2010, 725, L91-L96.	8.3	52
35	Probing Massive Black Hole Binary Populations with LISA. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	44