Per Olof Ljungdahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566345/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Urinary Tract Infections: Fungi (Candida spp.). , 2022, , 44-59.		1
2	Amino Acid Sensing and Assimilation by the Fungal Pathogen Candida albicans in the Human Host. Pathogens, 2022, 11, 5.	2.8	11
3	The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Reports, 2021, 36, 109406.	6.4	10
4	Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans. PLoS Pathogens, 2020, 16, e1008328.	4.7	16
5	Title is missing!. , 2020, 16, e1008328.		0
6	Title is missing!. , 2020, 16, e1008328.		0
7	Title is missing!. , 2020, 16, e1008328.		0
8	Title is missing!. , 2020, 16, e1008328.		0
9	Title is missing!. , 2020, 16, e1008328.		0
10	Title is missing!. , 2020, 16, e1008328.		0
11	Title is missing!. , 2020, 16, e1008328.		0
12	Title is missing!. , 2020, 16, e1008328.		0
13	Ssy1 functions at the plasma membrane as a receptor of extracellular amino acids independent of plasma membraneâ€endoplasmic reticulum junctions. Traffic, 2019, 20, 775-784.	2.7	2
14	Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLoS Genetics, 2019, 15, e1007976.	3.5	68
15	Spatial and temporal regulation of the endoproteolytic activity of the SPS-sensor–controlled Ssy5 signaling protease. Molecular Biology of the Cell, 2019, 30, 2709-2720.	2.1	5
16	Ssy5 is a signaling serine protease that exhibits atypical biogenesis and marked S1 specificity. Journal of Biological Chemistry, 2018, 293, 8362-8378.	3.4	5
17	Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathogens, 2018, 14, e1007076.	4.7	54
18	Cdc48 and Ubx1 participate in an inner nuclear membrane associated degradation pathway that governs the turnover of Asi1_lournal of Cell Science_2016_129_3770-3780	2.0	19

PER OLOF LJUNGDAHL

#	Article	IF	CITATIONS
19	Diverse Nitrogen Sources in Seminal Fluid Act in Synergy To Induce Filamentous Growth of Candida albicans. Applied and Environmental Microbiology, 2015, 81, 2770-2780.	3.1	7
20	Atypical Ubiquitylation in Yeast Targets Lysine-less Asi2 for Proteasomal Degradation. Journal of Biological Chemistry, 2015, 290, 2489-2495.	3.4	22
21	A nuclear ubiquitin-proteasomal pathway targets inner nuclear membrane protein Asi2 for degradation. Journal of Cell Science, 2014, 127, 3603-13.	2.0	30
22	Protein quality control at the inner nuclear membrane. Nature, 2014, 516, 410-413.	27.8	188
23	Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Molecular Biology of the Cell, 2014, 25, 3823-3833.	2.1	21
24	Rts1-protein phosphatase 2A antagonizes Ptr3-mediated activation of the signaling protease Ssy5 by casein kinase I. Molecular Biology of the Cell, 2013, 24, 1480-1492.	2.1	14
25	Ssy5 Peptidase: A Chymotrypsin-Like Signaling Protease in Yeast. , 2013, , 3103-3110.		2
26	SOMA: A Single Oligonucleotide Mutagenesis and Cloning Approach. PLoS ONE, 2013, 8, e64870.	2.5	21
27	Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 885-929.	2.9	466
28	Wild-Type Drosophila melanogaster as a Model Host to Analyze Nitrogen Source Dependent Virulence of Candida albicans. PLoS ONE, 2011, 6, e27434.	2.5	30
29	A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Molecular Biology of the Cell, 2011, 22, 2754-2765.	2.1	29
30	The Prodomain of Ssy5 Protease Controls Receptor-Activated Proteolysis of Transcription Factor Stp1. Molecular and Cellular Biology, 2010, 30, 3299-3309.	2.3	30
31	Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochemical Society Transactions, 2009, 37, 242-247.	3.4	113
32	The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Molecular Microbiology, 2008, 42, 215-228.	2.5	78
33	Inner Nuclear Membrane Proteins Asi1, Asi2, and Asi3 Function in Concert to Maintain the Latent Properties of Transcription Factors Stp1 and Stp2. Journal of Biological Chemistry, 2007, 282, 594-605.	3.4	53
34	Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. Journal of Cell Biology, 2007, 176, 617-628.	5.2	89
35	Ssh4, Rcr2 and Rcr1 Affect Plasma Membrane Transporter Activity in Saccharomyces cerevisiae. Genetics, 2007, 175, 1681-1694.	2.9	20
36	Dal81 Enhances Stp1- and Stp2-Dependent Transcription Necessitating Negative Modulation by Inner Nuclear Membrane Protein Asi1 in <i>Saccharomyces cerevisiae</i> . Genetics, 2007, 176, 2087-2097.	2.9	30

PER OLOF LJUNGDAHL

#	Article	IF	CITATIONS
37	Host-Pathogen Interactions and the Pathological Consequences of Acute Systemic Candida albicans Infections in Mice. Current Drug Targets, 2006, 7, 483-494.	2.1	19
38	Regulation of transcription factor latency by receptor-activated proteolysis. Genes and Development, 2006, 20, 1563-1568.	5.9	55
39	Asi1 is an inner nuclear membrane protein that restricts promoter access of two latent transcription factors. Journal of Cell Biology, 2006, 173, 695-707.	5.2	44
40	Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. Journal of Cell Biology, 2005, 168, 79-88.	5.2	89
41	Divergence of Stp1 and Stp2 Transcription Factors in Candida albicans Places Virulence Factors Required for Proper Nutrient Acquisition under Amino Acid Control. Molecular and Cellular Biology, 2005, 25, 9435-9446.	2.3	105
42	Ancillary proteins in membrane targeting of transporters. Topics in Current Genetics, 2004, , 207-234.	0.7	0
43	The N-Terminal Regulatory Domain of Stp1p Is Modular and, Fused to an Artificial Transcription Factor, Confers Full Ssy1p-Ptr3p-Ssy5p Sensor Control. Molecular and Cellular Biology, 2004, 24, 7503-7513.	2.3	44
44	Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast, 2004, 21, 193-199.	1.7	60
45	An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Molecular Microbiology, 2004, 51, 371-384.	2.5	52
46	Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Molecular Microbiology, 2003, 47, 767-780.	2.5	95
47	The Coxsackievirus and Adenovirus Receptor (CAR) Forms a Complex with the PDZ Domain-containing Protein Ligand-of-Numb Protein-X (LNX). Journal of Biological Chemistry, 2003, 278, 7439-7444.	3.4	91
48	Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes and Development, 2002, 16, 3158-3172.	5.9	109
49	Mrd1p Is Required for Processing of Pre-rRNA and for Maintenance of Steady-state Levels of 40 S Ribosomal Subunits in Yeast. Journal of Biological Chemistry, 2002, 277, 18431-18439.	3.4	29
50	Sensors of extracellular nutrients in Saccharomyces cerevisiae. Current Genetics, 2001, 40, 91-109.	1.7	183
51	Genetic and Biochemical Analysis of the Yeast Plasma Membrane Ssy1p-Ptr3p-Ssy5p Sensor of Extracellular Amino Acids. Molecular and Cellular Biology, 2001, 21, 814-826.	2.3	141
52	Suppressors of <i>ssy1</i> and <i>ptr3</i> Null Mutations Define Novel Amino Acid Sensor-Independent Genes in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 158, 973-988.	2.9	71
53	A Method for Determining the in VivoTopology of Yeast Polytopic Membrane Proteins Demonstrates That Gap1p Fully Integrates into the Membrane Independently of Shr3p. Journal of Biological Chemistry, 2000, 275, 31488-31495.	3.4	44
54	Ssy1p and Ptr3p Are Plasma Membrane Components of a Yeast System That Senses Extracellular Amino Acids. Molecular and Cellular Biology, 1999, 19, 5405-5416.	2.3	186

PER OLOF LJUNGDAHL

#	Article	IF	CITATIONS
55	Shr3p Mediates Specific COPII Coatomer–Cargo Interactions Required for the Packaging of Amino Acid Permeases Into ER-derived Transport Vesicles. Molecular Biology of the Cell, 1999, 10, 3549-3565.	2.1	59
56	SHR3 function is linked to COPII mediated ER vesicle formation. Folia Microbiologica, 1996, 41, 93-93.	2.3	1
5 7	Amino acid permeases require COPII components and the ER resident membrane protein Shr3p for packaging into transport vesicles in vitro Journal of Cell Biology, 1996, 135, 585-595.	5.2	110
58	Characterization of Saccharomyces Cerevisiae Pseudohyphal Growth. , 1993, , 83-103.		11
59	Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell, 1992, 68, 1077-1090.	28.9	1,202
60	SHR3: A novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell, 1992, 71, 463-478.	28.9	210
61	Purification of highly active cytochrome bc1 complexes from phylogenetically diverse species by a single chromatographic procedure. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 891, 227-241.	1.0	166
62	The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibriogigas. Biochemical and Biophysical Research Communications, 1982, 106, 610-616.	2.1	161
63	Technique for Simultaneous Determination of [³⁵ S]Sulfide and [¹⁴ C]Carbon Dioxide in Anaerobic Aqueous Samples. Applied and Environmental Microbiology, 1981, 41, 822-825.	3.1	7