Laurent Gros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55663/publications.pdf

Version: 2024-02-01

430874 501196 1,318 28 18 28 h-index citations g-index papers 31 31 31 2296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid communication: insights into the role of extracellular vesicles during Auger radioimmunotherapy. International Journal of Radiation Biology, 2023, 99, 109-118.	1.8	6
2	Improving Biologics' Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers, 2021, 13, 4620.	3.7	9
3	Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Reports, 2019, 27, 2411-2425.e9.	6.4	274
4	IL-21 promotes the development of a CD73-positive $V\hat{l}^39V\hat{l}^2$ T cell regulatory population. Oncolmmunology, 2018, 7, e1379642.	4.6	24
5	PD-1 blockade at the time of tumor escape potentiates the immune-mediated antitumor effects of a melanoma-targeting monoclonal antibody. Oncolmmunology, 2017, 6, e1353857.	4.6	14
6	Abstract 3218: Disruption of the CD39 immune checkpoint pathway increases the efficacy of various anticancer therapies in syngeneic mouse models. , 2016, , .		0
7	Inhibition of CD39 Enzymatic Function at the Surface of Tumor Cells Alleviates Their Immunosuppressive Activity. Cancer Immunology Research, 2015, 3, 254-265.	3.4	190
8	Tumor antigen-targeting monoclonal antibody-based immunotherapy: Orchestrating combined strategies for the development of long-term antitumor immunity. Oncolmmunology, 2014, 3, e955684.	4.6	44
9	Plasticity of γδT Cells: Impact on the Anti-Tumor Response. Frontiers in Immunology, 2014, 5, 622.	4.8	122
10	Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies. Blood, 2013, 121, 1102-1111.	1.4	25
11	Long-Lasting Protective Antiviral Immunity Induced by Passive Immunotherapies Requires both Neutralizing and Effector Functions of the Administered Monoclonal Antibody. Journal of Virology, 2010, 84, 10169-10181.	3.4	33
12	A Crucial Role for Infected-Cell/Antibody Immune Complexes in the Enhancement of Endogenous Antiviral Immunity by Short Passive Immunotherapy. PLoS Pathogens, 2010, 6, e1000948.	4.7	50
13	Endogenous Cytotoxic T-Cell Response Contributes to the Long-Term Antiretroviral Protection Induced by a Short Period of Antibody-Based Immunotherapy of Neonatally Infected Mice. Journal of Virology, 2008, 82, 1339-1349.	3.4	21
14	Characterization of prmt7 \hat{l} ± and \hat{l}^2 isozymes from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1646-1656.	2.4	28
15	Efficient Mother-to-Child Transfer of Antiretroviral Immunity in the Context of Preclinical Monoclonal Antibody-Based Immunotherapy. Journal of Virology, 2006, 80, 10191-10200.	3.4	12
16	Induction of Long-Term Protective Antiviral Endogenous Immune Response by Short Neutralizing Monoclonal Antibody Treatment. Journal of Virology, 2005, 79, 6272-6280.	3.4	25
17	Monoclonal Antibody-based Genetic Immunotherapy. Current Gene Therapy, 2004, 4, 347-356.	2.0	12
18	Inhibition of ATP-sensitive K+ channels by substituted benzo[c]quinolizinium CFTR activators. Biochemical Pharmacology, 2003, 66, 425-430.	4.4	10

#	ARTICLE	IF	CITATION
19	Monoclonal Antibody 667 Recognizes the Variable Region A Motif of the Ecotropic Retrovirus CasBrE Envelope Glycoprotein and Inhibits Env Binding to the Viral Receptor. Journal of Virology, 2003, 77, 10984-10993.	3.4	8
20	Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Research, 2003, 63, 164-71.	0.9	58
21	Counteraction of Type 1 Diabetic Alterations by Engineering Skeletal Muscle to Produce Insulin: Insights From Transgenic Mice. Diabetes, 2002, 51, 704-711.	0.6	26
22	Block of Ca2+ -channels by alpha-endosulphine inhibits insulin release. British Journal of Pharmacology, 2002, 135, 1810-1818.	5.4	10
23	Characterization of two novel forms of the rat sulphonylurea receptor SUR1A2 and SUR1Bî"31. British Journal of Pharmacology, 2002, 137, 98-106.	5.4	13
24	Transgenic mice overexpressing insulin-like growth factor-II in \hat{l}^2 cells develop type 2 diabetes. Journal of Clinical Investigation, 2000, 105, 731-740.	8.2	151
25	Insulin Production by Engineered Muscle Cells. Human Gene Therapy, 1999, 10, 1207-1217.	2.7	45
26	Cloning and Tissue Distribution of a New Rat Olfactory Receptor-like (OL2). Biochemical and Biophysical Research Communications, 1998, 242, 669-672.	2.1	39
27	Regulated Production of Mature Insulin by Non- <i>l²</i> l>-Cells. Human Gene Therapy, 1997, 8, 2249-2259.	2.7	45
28	Comparative effects of GLP-1-(7-36) amide, oxyntomodulin and glucagon on rabbit gastric parietal cell function. European Journal of Pharmacology, 1995, 288, 319-327.	2.6	23