
Laurence M Morel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	12.4	502
2	Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity, 1994, 1, 219-229.	14.3	476
3	Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6670-6675.	7.1	364
4	Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis. A possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis Journal of Clinical Investigation, 1998, 101, 1362-1371.	8.2	324
5	The major murine systemic lupus erythematosus susceptibility locus, <i>Sle1</i> , is a cluster of functionally related genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1787-1792.	7.1	308
6	Murine Models of Systemic Lupus Erythematosus. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-19.	3.0	306
7	Speed congenics: a classic technique in the fast lane (relatively speaking). Trends in Immunology, 1997, 18, 472-477.	7.5	301
8	Association of Extensive Polymorphisms in the SLAM/CD2 Gene Cluster with Murine Lupus. Immunity, 2004, 21, 769-780.	14.3	253
9	Cr2, a Candidate Gene in the Murine Sle1c Lupus Susceptibility Locus, Encodes a Dysfunctional Protein. Immunity, 2001, 15, 775-785.	14.3	214
10	Role of B-1a cells in autoimmunity. Autoimmunity Reviews, 2006, 5, 403-408.	5.8	213
11	Functional dissection of systemic lupus erythematosus using congenic mouse strains. Journal of Immunology, 1997, 158, 6019-28.	0.8	205
12	Immunometabolism in systemic lupus erythematosus. Nature Reviews Rheumatology, 2017, 13, 280-290.	8.0	190
13	The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1787-1792.	7.1	185
14	IL-6 Produced by Dendritic Cells from Lupus-Prone Mice Inhibits CD4+CD25+ T Cell Regulatory Functions. Journal of Immunology, 2007, 178, 271-279.	0.8	182
15	Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mammalian Genome, 1996, 7, 335-339.	2.2	181
16	Epistatic Modifiers of Autoimmunity in a Murine Model of Lupus Nephritis. Immunity, 1999, 11, 131-139.	14.3	177
17	Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. Journal of Immunology, 1997, 159, 454-65.	0.8	171
18	Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. Journal of Clinical Investigation, 1999, 103, 1685-1695.	8.2	162

#	Article	IF	CITATIONS
19	Genetic dissection of systemic lupus erythematosus. Current Opinion in Immunology, 1999, 11, 701-707.	5.5	148
20	Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of Immunology, 2016, 196, 80-90.	0.8	132
21	Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Science Translational Medicine, 2020, 12, .	12.4	127
22	Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. Journal of Immunology, 1999, 162, 6492-502.	0.8	127
23	Genetics of SLE: evidence from mouse models. Nature Reviews Rheumatology, 2010, 6, 348-357.	8.0	122
24	Accumulation of splenic B1a cells with potent antigen-presenting capability in NZM2410 lupus-prone mice. Arthritis and Rheumatism, 1998, 41, 1652-1662.	6.7	114
25	An update on lupus animal models. Current Opinion in Rheumatology, 2017, 29, 434-441.	4.3	112
26	BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus. Arthritis and Rheumatism, 2005, 52, 2080-2091.	6.7	110
27	Inhibition of Glycolysis Reduces Disease Severity in an Autoimmune Model of Rheumatoid Arthritis. Frontiers in Immunology, 2018, 9, 1973.	4.8	104
28	Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nature Communications, 2018, 9, 4369.	12.8	94
29	Multiplex inheritance of component phenotypes in a murine model of lupus. Mammalian Genome, 1999, 10, 176-181.	2.2	91
30	Aberrant Macrophages Mediate Defective Kidney Repair That Triggers Nephritis in Lupus-Susceptible Mice. Journal of Immunology, 2012, 188, 4568-4580.	0.8	91
31	Genetic Determination of T Cell Help in Loss of Tolerance to Nuclear Antigens. Journal of Immunology, 2005, 174, 7692-7702.	0.8	90
32	The Major Murine Systemic Lupus Erythematosus Susceptibility Locus <i>Sle1</i> Results in Abnormal Functions of Both B and T Cells. Journal of Immunology, 2002, 169, 2694-2700.	0.8	85
33	Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. Journal of Immunology, 1999, 162, 2415-21.	0.8	83
34	Treatment with a Laminin-Derived Peptide Suppresses Lupus Nephritis. Journal of Immunology, 2005, 175, 5516-5523.	0.8	78
35	A Role for the <i>Cr2</i> Gene in Modifying Autoantibody Production in Systemic Lupus Erythematosus. Journal of Immunology, 2002, 169, 1587-1592.	0.8	73
36	IL-10 regulation of lupus in the NZM2410 murine model. Laboratory Investigation, 2006, 86, 1136-1148.	3.7	73

#	Article	IF	CITATIONS
37	Targeting T Cell Activation and Lupus Autoimmune Phenotypes by Inhibiting Glucose Transporters. Frontiers in Immunology, 2019, 10, 833.	4.8	73
38	Susceptibility to lupus nephritis in the NZB/W model system. Current Opinion in Immunology, 1998, 10, 718-725.	5.5	71
39	Genetic dissection of lupus nephritis in murine models of SLE. Journal of Clinical Immunology, 1997, 17, 272-281.	3.8	61
40	A genetic lesion that arrests plasma cell homing to the bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12905-12910.	7.1	59
41	A novel isoform of the Ly108 gene ameliorates murine lupus. Journal of Experimental Medicine, 2011, 208, 811-822.	8.5	59
42	Contributions of B cells to lupus pathogenesis. Molecular Immunology, 2014, 62, 329-338.	2.2	58
43	Genetic interactions between susceptibility loci reveal epistatic pathogenic networks in murine lupus. Genes and Immunity, 2003, 4, 575-585.	4.1	57
44	Genetic Dissection of the Murine Lupus Susceptibility Locus <i>Sle2</i> : Contributions to Increased Peritoneal B-1a Cells and Lupus Nephritis Map to Different Loci. Journal of Immunology, 2005, 175, 936-943.	0.8	55
45	Murine Lupus Susceptibility Locus <i>Sle1c2</i> Mediates CD4+ T Cell Activation and Maps to Estrogen-Related Receptor γ. Journal of Immunology, 2012, 189, 793-803.	0.8	55
46	Backcross analysis of genes linked to autoantibody production in New Zealand White mice. Journal of Immunology, 1996, 157, 2719-27.	0.8	55
47	Genetics of autoimmune diseases in humans and in animal models. Current Opinion in Immunology, 2002, 14, 803-811.	5.5	53
48	Genetic Dissection of Systemic Lupus Erythematosus Pathogenesis: Evidence for Functional Expression of <i>Sle3/5</i> by Non-T Cells. Journal of Immunology, 2002, 169, 4025-4032.	0.8	50
49	STAT4 deficiency reduces autoantibody production and glomerulonephritis in a mouse model of lupus. Clinical Immunology, 2006, 120, 189-198.	3.2	50
50	Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus. Journal of Clinical Investigation, 2015, 125, 2877-2890.	8.2	48
51	Ant queens deposit pheromones and antimicrobial agents on eggs. Die Naturwissenschaften, 1995, 82, 93-95.	1.6	47
52	Type I IFN Sensing by cDCs and CD4+ T Cell Help Are Both Requisite for Cross-Priming of AAV Capsid-Specific CD8+ T Cells. Molecular Therapy, 2020, 28, 758-770.	8.2	45
53	Mechanisms of Peritoneal B-1a Cells Accumulation Induced by Murine Lupus Susceptibility Locus <i>Sle2</i> . Journal of Immunology, 2004, 173, 6050-6058.	0.8	44
54	Targeted approaches to induce immune tolerance for Pompe disease therapy. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15053.	4.1	44

#	Article	IF	CITATIONS
55	Direct B cell stimulation by dendritic cells in a mouse model of lupus. Arthritis and Rheumatism, 2008, 58, 1741-1750.	6.7	43
56	Murine Lupus Susceptibility Locus <i>Sle1a</i> Controls Regulatory T Cell Number and Function through Multiple Mechanisms. Journal of Immunology, 2007, 179, 7439-7447.	0.8	42
57	Autoreactive marginal zone B cells enter the follicles and interact with CD4+ T cells in lupus-prone mice. BMC Immunology, 2011, 12, 7.	2.2	42
58	Lessons from the NZM2410 Model and Related Strains. International Reviews of Immunology, 2000, 19, 423-446.	3.3	40
59	Animal Models of Molecular Pathology. Progress in Molecular Biology and Translational Science, 2012, 105, 321-370.	1.7	40
60	Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Frontiers in Immunology, 2020, 11, 1741.	4.8	40
61	Mouse Models of Human Autoimmune Diseases: Essential Tools That Require the Proper Controls. PLoS Biology, 2004, 2, e241.	5.6	39
62	Lupus resistance is associated with marginal zone abnormalities in an NZM murine model. Laboratory Investigation, 2007, 87, 14-28.	3.7	39
63	Deficiency of type I interferon contributes toSle2-associated component lupus phenotypes. Arthritis and Rheumatism, 2005, 52, 3063-3072.	6.7	38
64	Murine lupus susceptibility locus Sle1a requires the expression of two sub-loci to induce inflammatory T cells. Genes and Immunity, 2010, 11, 542-553.	4.1	38
65	Immune Response-Dependent Assembly of IMP Dehydrogenase Filaments. Frontiers in Immunology, 2018, 9, 2789.	4.8	37
66	Metformin Inhibits the Type 1 IFN Response in Human CD4+ T Cells. Journal of Immunology, 2019, 203, 338-348.	0.8	37
67	Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes and Immunity, 2007, 8, 604-612.	4.1	36
68	Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Rheumatology, The, 2020, 2, e210-e216.	3.9	36
69	A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiological Entomology, 1992, 17, 384-390.	1.5	34
70	Several Genes Contribute to the Production of Autoreactive B and T Cells in the Murine Lupus Susceptibility Locus <i>Sle1c</i> . Journal of Immunology, 2005, 175, 1080-1089.	0.8	34
71	Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus. PLoS ONE, 2016, 11, e0156583.	2.5	34
72	Defective response of CD4+ T cells to retinoic acid and TGFÎ ² in systemic lupus erythematosus. Arthritis Research and Therapy, 2011, 13, R106.	3.5	31

#	Article	IF	CITATIONS
73	Pre-B Cell Leukemia Homeobox 1 Is Associated with Lupus Susceptibility in Mice and Humans. Journal of Immunology, 2012, 188, 604-614.	0.8	31
74	Mapping Lupus Susceptibility Genes in the NZM2410 Mouse Model. Advances in Immunology, 2012, 115, 113-139.	2.2	31
75	Quercitrin ameliorates the development of systemic lupus erythematosus-like disease in a chronic graft-versus-host murine model. American Journal of Physiology - Renal Physiology, 2016, 311, F217-F226.	2.7	31
76	Genetic Dissection of Lupus Pathogenesis: Sle3/5 Impacts IgH CDR3 Sequences, Somatic Mutations, and Receptor Editing. Journal of Immunology, 2004, 173, 7368-7376.	0.8	30
77	Cyclin-Dependent Kinase Inhibitor <i>Cdkn2c</i> Regulates B Cell Homeostasis and Function in the NZM2410-Derived Murine Lupus Susceptibility Locus <i>Sle2c1</i> . Journal of Immunology, 2011, 186, 6673-6682.	0.8	30
78	Immune Tolerance Induction to Factor IX through B Cell Gene Transfer: TLR9 Signaling Delineates between Tolerogenic and Immunogenic B Cells. Molecular Therapy, 2014, 22, 1139-1150.	8.2	30
79	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	4.7	30
80	The Lupus Susceptibility Gene <i>Pbx1</i> Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation. Journal of Immunology, 2016, 197, 458-469.	0.8	30
81	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	6.0	30
82	Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mammalian Genome, 2001, 12, 22-26.	2.2	29
83	Metabolic Factors that Contribute to Lupus Pathogenesis. Critical Reviews in Immunology, 2016, 36, 75-98.	0.5	29
84	Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer. Cellular Immunology, 2019, 342, 103682.	3.0	29
85	Immune metabolism regulation of the germinal center response. Experimental and Molecular Medicine, 2020, 52, 348-355.	7.7	29
86	<i>Setd1a</i> regulates progenitor Bâ€cellâ€toâ€precursor Bâ€cell development through histone H3 lysine 4 trimethylation and <i>Ig heavyâ€chain</i> rearrangement. FASEB Journal, 2015, 29, 1505-1515.	0.5	28
87	The NZM2410-derived lupus susceptibility locus Sle2c1 increases Th17 polarization and induces nephritis in fas-deficient mice. Arthritis and Rheumatism, 2011, 63, 764-774.	6.7	27
88	Chromosomal linkage associated with disease severity in the hydrocephalic H-Tx rat. Behavior Genetics, 2001, 31, 101-111.	2.1	26
89	Constitutive overexpression of BAFF in autoimmuneâ€resistant mice drives only some aspects of systemic lupus erythematosus–like autoimmunity. Arthritis and Rheumatism, 2010, 62, 2432-2442.	6.7	26
90	Effects of metformin on disease flares in patients with systemic lupus erythematosus: post hoc analyses from two randomised trials. Lupus Science and Medicine, 2020, 7, e000429.	2.7	26

#	Article	IF	CITATIONS
91	Dysregulated Cytokine Production by Dendritic Cells Modulates B Cell Responses in the NZM2410 Mouse Model of Lupus. PLoS ONE, 2014, 9, e102151.	2.5	26
92	A New Zealand Black-Derived Locus Suppresses Chronic Graft-versus-Host Disease and Autoantibody Production through Nonlymphoid Bone Marrow-Derived Cells. Journal of Immunology, 2011, 186, 4130-4139.	0.8	25
93	Cyclin-Dependent Kinase Inhibitor <i>Cdkn2c</i> Deficiency Promotes B1a Cell Expansion and Autoimmunity in a Mouse Model of Lupus. Journal of Immunology, 2012, 189, 2931-2940.	0.8	25
94	Activation of Rheumatoid Factor–Specific B Cells Is Antigen Dependent and Occurs Preferentially Outside of Germinal Centers in the Lupus-Prone NZM2410 Mouse Model. Journal of Immunology, 2014, 193, 1609-1621.	0.8	25
95	Immune cell metabolism in autoimmunity. Clinical and Experimental Immunology, 2019, 197, 181-192.	2.6	25
96	The Centromeric Region of Chromosome 7 from MRL Mice (Lmb3) Is an Epistatic Modifier of Fas for Autoimmune Disease Expression. Journal of Immunology, 2004, 172, 2785-2794.	0.8	24
97	Intrafollicular location of marginal zone/CD1dhi B cells is associated with autoimmune pathology in a mouse model of lupus. Laboratory Investigation, 2008, 88, 1008-1020.	3.7	24
98	Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Current Opinion in Immunology, 2019, 61, 10-16.	5.5	24
99	Induced Murine Models of Systemic Lupus Erythematosus. Methods in Molecular Biology, 2014, 1134, 103-130.	0.9	23
100	D-mannose ameliorates autoimmune phenotypes in mouse models of lupus. BMC Immunology, 2021, 22, 1.	2.2	22
101	Loss of Gut Barrier Integrity In Lupus. Frontiers in Immunology, 0, 13, .	4.8	19
102	B cell contribution of the CD4 ⁺ T cell inflammatory phenotypes in systemic lupus erythematosus. Autoimmunity, 2017, 50, 37-41.	2.6	18
103	Iron Metabolism: An Under Investigated Driver of Renal Pathology in Lupus Nephritis. Frontiers in Medicine, 2021, 8, 643686.	2.6	18
104	Microbiota-mediated skewing of tryptophan catabolism modulates CD4+ TÂcells in lupus-prone mice. IScience, 2022, 25, 104241.	4.1	18
105	Dichotomous effects of complete versus partial class II major histocompatibility complex deficiency on circulating autoantibody levels in autoimmune-prone mice. Arthritis and Rheumatism, 2004, 50, 2227-2239.	6.7	17
106	The granulocyte colony stimulating factor pathway regulates autoantibody production in a murine induced model of systemic lupus erythematosus. Arthritis Research and Therapy, 2013, 15, R49.	3.5	17
107	Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization. Journal of Immunology, 2018, 200, 3087-3099.	0.8	17
108	Impaired innate immune signaling due to combined Toll-like receptor 2 and 4 deficiency affects both periodontitis and atherosclerosis in response to polybacterial infection Pathogens and Disease, 2018, 76, .	2.0	17

#	Article	IF	CITATIONS
109	Genetics of Human Lupus Nephritis. Seminars in Nephrology, 2007, 27, 2-11.	1.6	16
110	Defective Bâ€cell response to Tâ€dependent immunization in lupusâ€prone mice. European Journal of Immunology, 2008, 38, 3028-3040.	2.9	16
111	T cells expressing the lupus susceptibility allele Pbx1d enhance autoimmunity and atherosclerosis in dyslipidemic mice. JCI Insight, 2020, 5, .	5.0	16
112	Regulating colonic dendritic cells by commensal glycosylated large surface layer protein A to sustain gut homeostasis against pathogenic inflammation. Mucosal Immunology, 2020, 13, 34-46.	6.0	15
113	Augmentation of NZB Autoimmune Phenotypes by the Sle1c Murine Lupus Susceptibility Interval. Journal of Immunology, 2007, 178, 4667-4675.	0.8	14
114	The Murine Pbx1-d Lupus Susceptibility Allele Accelerates Mesenchymal Stem Cell Differentiation and Impairs Their Immunosuppressive Function. Journal of Immunology, 2015, 194, 43-55.	0.8	14
115	Expansion of B-1a Cells with Germline Heavy Chain Sequence in Lupus Mice. Frontiers in Immunology, 2016, 7, 108.	4.8	14
116	Emergency myelopoiesis contributes to immune cell exhaustion and pulmonary vascular remodelling. British Journal of Pharmacology, 2021, 178, 187-202.	5.4	14
117	Efficacy of the Combination of Metformin and CTLA4Ig in the (NZB × NZW)F1 Mouse Model of Lupus Nephritis. ImmunoHorizons, 2020, 4, 319-331.	1.8	14
118	Aberrant signaling in the TNFα/TNF receptor 1 pathway of the NZM2410 lupus-prone mouse. Clinical Immunology, 2004, 110, 124-133.	3.2	13
119	BAFF blockade prevents anti-drug antibody formation in a mouse model of Pompe disease. Clinical Immunology, 2015, 158, 140-147.	3.2	13
120	The PBX1 lupus susceptibility gene regulates CD44 expression. Molecular Immunology, 2017, 85, 148-154.	2.2	13
121	Murine lupus susceptibility locus Sle2 activates DNA-reactive B cells through two sub-loci with distinct phenotypes. Genes and Immunity, 2011, 12, 199-207.	4.1	12
122	Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model. Scientific Reports, 2021, 11, 6354.	3.3	12
123	The SLE-associated Pbx1-d isoform acts as a dominant-negative transcriptional regulator. Genes and Immunity, 2012, 13, 653-657.	4.1	11
124	Alpha 1 Antitrypsin Gene Therapy Extends the Lifespan of Lupus-Prone Mice. Molecular Therapy - Methods and Clinical Development, 2018, 11, 131-142.	4.1	11
125	Lupus susceptibility gene Esrrg modulates regulatory T cells through mitochondrial metabolism. JCI Insight, 2021, 6, .	5.0	11
126	Contribution of Bâ€la cells to systemic lupus erythematosus in the NZM2410 mouse model. Annals of the New York Academy of Sciences, 2015, 1362, 215-223.	3.8	10

#	Article	IF	CITATIONS
127	Immunophenotyping reveals distinct subgroups of lupus patients based on their activated T cell subsets. Clinical Immunology, 2020, 221, 108602.	3.2	10
128	Genetic Dissection of Systemic Lupus Erythematosus Pathogenesis: Partial Functional Complementation between <i>Sle1</i> and <i>Sle3/5</i> Demonstrates Requirement for Intracellular Coexpression for Full Phenotypic Expression of Lupus. Journal of Immunology, 2005, 175, 1337-1345.	0.8	9
129	Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity. Cellular and Molecular Life Sciences, 2018, 75, 3817-3827.	5.4	9
130	Alpha-1-Antitrypsin Ameliorates Pristane Induced Diffuse Alveolar Hemorrhage in Mice. Journal of Clinical Medicine, 2019, 8, 1341.	2.4	9
131	Pharmacologically Inferred Glycolysis and Clutaminolysis Requirement of B Cells in Lupus-Prone Mice. Journal of Immunology, 2022, 208, 2098-2108.	0.8	9
132	Genetic Variation at a Yin-Yang 1 Response Site Regulates the Transcription of Cyclin-Dependent Kinase Inhibitor p18INK4C Transcript in Lupus-Prone Mice. Journal of Immunology, 2012, 188, 4992-5002.	0.8	8
133	B Cell Tolerance to Deiminated Histones in BALB/c, C57BL/6, and Autoimmune-Prone Mouse Strains. Frontiers in Immunology, 2017, 8, 362.	4.8	8
134	A Skint6 allele potentially contributes to mouse lupus. Genes and Immunity, 2017, 18, 111-117.	4.1	7
135	Ant Queens Deposit Pheromones and Antimicrobial Agents on Eggs. Die Naturwissenschaften, 1995, 82, 93-95.	1.6	7
136	The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T-cell-mediated pathology in B6.Faslpr mice. Genes and Immunity, 2013, 14, 373-379.	4.1	6
137	A Variant of the Histone-Binding Protein sNASP Contributes to Mouse Lupus. Frontiers in Immunology, 2019, 10, 637.	4.8	6
138	Redox Homeostasis Involvement in the Pharmacological Effects of Metformin in Systemic Lupus Erythematosus. Antioxidants and Redox Signaling, 2022, 36, 462-479.	5.4	6
139	The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology, 2022, 163, .	2.8	6
140	TLR7 Activation Accelerates Cardiovascular Pathology in a Mouse Model of Lupus. Frontiers in Immunology, 0, 13, .	4.8	6
141	Promise and complexity of lupus mouse models. Nature Immunology, 2021, 22, 683-686.	14.5	5
142	Protective Role of Myeloid Cells Expressing a G-CSF Receptor Polymorphism in an Induced Model of Lupus. Frontiers in Immunology, 2018, 9, 1053.	4.8	4
143	Erythrocyte-derived mitochondria: an unexpected interferon inducer in lupus. Trends in Immunology, 2021, 42, 1054-1056.	6.8	4
144	Metabolic regulation of follicular helper T cell differentiation in a mouse model of lupus. Immunology Letters, 2022, 247, 13-21.	2.5	4

#	Article	IF	CITATIONS
145	Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice. Genetics & Epigenetics, 2015, 7, GEG.S29696.	2.5	3
146	Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 ΔDâ^'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51.	2.6	3
147	Contribution of Dendritic Cell Subsets to T Cell–Dependent Responses in Mice. Journal of Immunology, 2022, 208, 1066-1075.	0.8	3
148	Genetic Variations Controlling Regulatory T Cell Development and Activity in Mouse Models of Lupus-Like Autoimmunity. Frontiers in Immunology, 2022, 13, .	4.8	3
149	Lupus at the molecular level. Protein and Cell, 2011, 2, 941-943.	11.0	2
150	The role of Pbx1 in T cells. Protein and Cell, 2011, 2, 946-949.	11.0	2
151	Genetic Insights into Murine Lupus. , 1999, , 124-139.		2
152	Attaining treat-to-target endpoints with metformin in lupus patients: a pooled analysis. Clinical and Experimental Rheumatology, 2021, , .	0.8	2
153	Vascular Inflammation in Mouse Models of Systemic Lupus Erythematosus. Frontiers in Cardiovascular Medicine, 2022, 9, 767450.	2.4	2
154	Labile iron accumulation augments T follicular helper cell differentiation. Journal of Clinical Investigation, 2022, 132, .	8.2	2
155	An Allelic Variant of Crry in the Murine Sle1c Lupus Susceptibility Interval Is Not Impaired in Its Ability To Regulate Complement Activation. Journal of Immunology, 2010, 185, 2331-2339.	0.8	1
156	Editorial: Mechanisms by Which SLE-Associated Genetic Variants Contribute to SLE Pathogenesis. Frontiers in Immunology, 2019, 10, 2808.	4.8	1
157	Genetic and cellular dissection of the activation of AM14 rheumatoid factor B cells in a mouse model of lupus. Journal of Leukocyte Biology, 2015, 98, 209-221.	3.3	0
158	Al-O3â€Efficacy and safety of intermittent 2-deoxyglucose therapy in mouse models of lupus. , 2018, , .		0
159	Immunometabolism. , 2019, , 153-163.		0
160	1404â€A peptide mimetic of the kinase inhibitory region of suppressor of cytokine signaling-1 attenuates lymphocyte activation and lupus progression in MRL/Lpr lupus model. , 2021, , .		0