Masahiko Furutani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of Boundary-Specific Genes in Arabidopsis. Plant Cell, 2007, 19, 473-484.	6.6	369
2	Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation. Plant Cell, 2006, 18, 2946-2957.	6.6	315
3	PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development (Cambridge), 2004, 131, 5021-5030.	2.5	231
4	Roles of <i>PIN-FORMED1</i> and <i>MONOPTEROS</i> in pattern formation of the apical region of the <i>Arabidopsis</i> embryo. Development (Cambridge), 2002, 129, 3965-3974.	2.5	191
5	The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. Plant Cell, 2017, 29, 1984-1999.	6.6	143
6	Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6562-6567.	7.1	93
7	The gene <i>MACCHI-BOU 4</i> / <i>ENHANCER OF PINOID</i> encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level. Development (Cambridge), 2007, 134, 3849-3859.	2.5	89
8	Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development (Cambridge), 2002, 129, 3965-74.	2.5	87
9	Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature Communications, 2020, 11, 76.	12.8	80
10	The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science, 2014, 5, 165.	3.6	77
11	Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11557-11562.	7.1	75
12	Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development (Cambridge), 2011, 138, 2069-2078.	2.5	72
13	CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis. Plant and Cell Physiology, 2012, 53, 287-303.	3.1	58
14	MACCHI-BOU 2 is Required for Early Embryo Patterning and Cotyledon Organogenesis in Arabidopsis. Plant and Cell Physiology, 2011, 52, 539-552.	3.1	53
15	Alkoxy-auxins Are Selective Inhibitors of Auxin Transport Mediated by PIN, ABCB, and AUX1 Transporters. Journal of Biological Chemistry, 2011, 286, 2354-2364.	3.4	52
16	MAB4-induced auxin sink generates local auxin gradients in <i>Arabidopsis</i> organ formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1198-1203.	7.1	47
17	Membrane Association of the <i>Arabidopsis </i> ARF Exchange Factor GNOM Involves Interaction of Conserved Domains. Plant Cell, 2008, 20, 142-151.	6.6	41
18	Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development. Plant Physiology, 2019, 180, 896-909.	4.8	41

Masahiko Furutani

#	Article	IF	CITATIONS
19	The GURKE Gene Encoding an Acetyl-CoA Carboxylase is Required for Partitioning the Embryo Apex into Three Subregions in Arabidopsis. Plant and Cell Physiology, 2004, 45, 1122-1128.	3.1	30
20	Insight into the basis of root growth in Arabidopsis thaliana provided by a simple mathematical model. Journal of Plant Research, 2006, 119, 85-93.	2.4	21
21	LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. Plant Physiology, 2021, 187, 1087-1095.	4.8	9
22	Pattern Formation during Dicotyledonous Plant Embryogenesis. , 2003, , 139-152.		1