
Brian A Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563896/publications.pdf Version: 2024-02-01

RDIAN & ANDERSON

#	Article	IF	CITATIONS
1	Motivated suppression of value- and threat-modulated attentional capture Emotion, 2022, 22, 780-794.	1.8	20
2	The influence of reward history on goal-directed visual search. Attention, Perception, and Psychophysics, 2022, 84, 325-331.	1.3	6
3	Systemic effects of selection history on learned ignoring. Psychonomic Bulletin and Review, 2022, 29, 1347-1354.	2.8	8
4	Using aversive conditioning with near-real-time feedback to shape eye movements during naturalistic viewing. Behavior Research Methods, 2021, 53, 993-1002.	4.0	4
5	The influence of threat on the efficiency of goal-directed attentional control. Psychological Research, 2021, 85, 980-986.	1.7	20
6	Relating value-driven attention to psychopathology. Current Opinion in Psychology, 2021, 39, 48-54.	4.9	10
7	Attentional avoidance of threatening stimuli. Psychological Research, 2021, 85, 82-90.	1.7	11
8	Previously reward-associated sounds interfere with goal-directed auditory processing. Quarterly Journal of Experimental Psychology, 2021, 74, 1257-1263.	1.1	10
9	Combined influence of valence and statistical learning on the control of attention: Evidence for independent sources of bias. Cognition, 2021, 208, 104554.	2.2	15
10	Time to stop calling it attentional "capture―and embrace a mechanistic understanding of attentional priority. Visual Cognition, 2021, 29, 537-540.	1.6	12
11	Semantic generalization of punishment-related attentional priority. Visual Cognition, 2021, 29, 310-317.	1.6	5
12	How does the attention system learn from aversive outcomes?. Emotion, 2021, 21, 898-903.	1.8	21
13	Punishment-modulated attentional capture is context specific Motivation Science, 2021, 7, 165-175.	1.6	13
14	Motivational Salience Guides Attention to Valuable and Threatening Stimuli: Evidence from Behavior and Functional Magnetic Resonance Imaging. Journal of Cognitive Neuroscience, 2021, 33, 2440-2460.	2.3	12
15	The past, present, and future of selection history. Neuroscience and Biobehavioral Reviews, 2021, 130, 326-350.	6.1	53
16	Oculomotor feedback rapidly reduces overt attentional capture. Cognition, 2021, 217, 104917.	2.2	7
17	Bicyclist-evoked arousal and greater attention to bicyclists independently promote safer driving. Cognitive Research: Principles and Implications, 2021, 6, 66.	2.0	1
18	Value-Biased Competition in the Auditory System of the Brain. Journal of Cognitive Neuroscience, 2021, 34, 180-191.	2.3	3

#	Article	IF	CITATIONS
19	How Does Threat Modulate the Motivational Effects of Reward on Attention?. Experimental Psychology, 2021, 68, 165-172.	0.7	0
20	Neural correlates of attentional capture by stimuli previously associated with social reward. Cognitive Neuroscience, 2020, 11, 5-15.	1.4	16
21	Measuring attention to reward as an individual trait: the value-driven attention questionnaire (VDAQ). Psychological Research, 2020, 84, 2122-2137.	1.7	5
22	Reward learning biases the direction of saccades. Cognition, 2020, 196, 104145.	2.2	14
23	Selection history is relative. Vision Research, 2020, 175, 23-31.	1.4	5
24	Inertia in value-driven attention. Learning and Memory, 2020, 27, 488-492.	1.3	11
25	The effect of concurrent reward on aversive information processing in the brain. NeuroImage, 2020, 217, 116890.	4.2	8
26	The influence of threat and aversive motivation on conflict processing in the Stroop task. Attention, Perception, and Psychophysics, 2020, 82, 2802-2813.	1.3	10
27	Selection history-driven signal suppression. Visual Cognition, 2020, 28, 112-118.	1.6	7
28	On the automaticity of attentional orienting to threatening stimuli Emotion, 2020, 20, 1109-1112.	1.8	46
29	Threat reduces value-driven but not salience-driven attentional capture Emotion, 2020, 20, 874-889.	1.8	23
30	Specificity and persistence of statistical learning in distractor suppression Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 324-334.	0.9	37
31	Arousal-Biased Competition Explains Reduced Distraction by Reward Cues under Threat. ENeuro, 2020, 7, ENEURO.0099-20.2020.	1.9	13
32	Test–retest reliability of value-driven attentional capture. Behavior Research Methods, 2019, 51, 720-726.	4.0	28
33	Selection history in context: Evidence for the role of reinforcement learning in biasing attention. Attention, Perception, and Psychophysics, 2019, 81, 2666-2672.	1.3	16
34	On the relationship between value-driven and stimulus-driven attentional capture. Attention, Perception, and Psychophysics, 2019, 81, 607-613.	1.3	42
35	Dissociable Components of Experience-Driven Attention. Current Biology, 2019, 29, 841-845.e2.	3.9	46
36	Semantic generalization of value-based attentional priority. Learning and Memory, 2019, 26, 460-464.	1.3	17

#	Article	IF	CITATIONS
37	Neural evidence for automatic value-modulated approach behaviour. Neurolmage, 2019, 189, 150-158.	4.2	14
38	Neurobiology of value-driven attention. Current Opinion in Psychology, 2019, 29, 27-33.	4.9	65
39	Dissociable neural mechanisms underlie value-driven and selection-driven attentional capture. Brain Research, 2019, 1708, 109-115.	2.2	30
40	Reduced Value-Driven Attentional Capture Among Children with ADHD Compared to Typically Developing Controls. Journal of Abnormal Child Psychology, 2018, 46, 1187-1200.	3.5	20
41	Controlled information processing, automaticity, and the burden of proof. Psychonomic Bulletin and Review, 2018, 25, 1814-1823.	2.8	23
42	On the representational nature of value-driven spatial attentional biases. Journal of Neurophysiology, 2018, 120, 2654-2658.	1.8	15
43	Mechanisms of value-learning in the guidance of spatial attention. Cognition, 2018, 178, 26-36.	2.2	31
44	Relating Attentional Biases for Stimuli Associated with Social Reward and Punishment to Autistic Traits. Collabra: Psychology, 2018, 4, .	1.8	8
45	Counterintuitive effects of negative social feedback on attention. Cognition and Emotion, 2017, 31, 590-597.	2.0	18
46	On the value-dependence of value-driven attentional capture. Attention, Perception, and Psychophysics, 2017, 79, 1001-1011.	1.3	61
47	Going for It. Current Directions in Psychological Science, 2017, 26, 140-145.	5.3	24
48	On the distinction between value-driven attention and selection history: Evidence from individuals with depressive symptoms. Psychonomic Bulletin and Review, 2017, 24, 1636-1642.	2.8	33
49	Linking dopaminergic reward signals to the development of attentional bias: A positron emission tomographic study. Neurolmage, 2017, 157, 27-33.	4.2	46
50	Density of available striatal dopamine receptors predicts trait impulsiveness during performance of an attention-demanding task. Journal of Neurophysiology, 2017, 118, 64-68.	1.8	5
51	Neural Basis of Cognitive Control over Movement Inhibition: Human fMRI and Primate Electrophysiology Evidence. Neuron, 2017, 96, 1447-1458.e6.	8.1	53
52	On the feature specificity of value-driven attention. PLoS ONE, 2017, 12, e0177491.	2.5	7
53	Reward processing in the value-driven attention network: reward signals tracking cue identity and location. Social Cognitive and Affective Neuroscience, 2017, 12, 461-467.	3.0	64
54	Learning Mechanisms Underlying Value-Driven Attention. Journal of Vision, 2017, 17, 1101.	0.3	0

#	Article	IF	CITATIONS
55	The attention habit: how reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 2016, 1369, 24-39.	3.8	286
56	Mechanisms of habitual approach: Failure to suppress irrelevant responses evoked by previously reward-associated stimuli Journal of Experimental Psychology: General, 2016, 145, 796-805.	2.1	35
57	Value-driven attentional capture in the auditory domain. Attention, Perception, and Psychophysics, 2016, 78, 242-250.	1.3	35
58	Neural mechanisms of goal-contingent task disengagement: Response-irrelevant stimuli activate the default mode network. Cortex, 2016, 81, 221-230.	2.4	15
59	What is abnormal about addiction-related attentional biases?. Drug and Alcohol Dependence, 2016, 167, 8-14.	3.2	63
60	Introduction to the special issue. Attention, Perception, and Psychophysics, 2016, 78, 1819-1821.	1.3	0
61	Reward, attention, and HIV-related risk in HIV+ individuals. Neurobiology of Disease, 2016, 92, 157-165.	4.4	34
62	The Role of Dopamine in Value-Based Attentional Orienting. Current Biology, 2016, 26, 550-555.	3.9	96
63	Social reward shapes attentional biases. Cognitive Neuroscience, 2016, 7, 30-36.	1.4	53
64	Learned states of preparatory attentional control Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1790-1805.	0.9	17
65	Value-driven attentional capture is modulated by spatial context. Visual Cognition, 2015, 23, 67-81.	1.6	35
66	Dissociable Effects of Salience on Attention and Goal-Directed Action. Current Biology, 2015, 25, 2040-2046.	3.9	53
67	Valuable orientations capture attention. Visual Cognition, 2015, 23, 133-146.	1.6	32
68	Value-driven attentional priority is context specific. Psychonomic Bulletin and Review, 2015, 22, 750-756.	2.8	73
69	The role of reward prediction in the control of attention Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1654-1664.	0.9	78
70	On the precision of goal-directed attentional selection Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1755-1762.	0.9	15
71	Conditional Automaticity in Response Selection. Psychological Science, 2014, 25, 547-554.	3.3	16
72	Value-driven attentional priority signals in human basal ganglia and visual cortex. Brain Research, 2014, 1587, 88-96.	2.2	134

5

#	Article	IF	CITATIONS
73	The attribution of value-based attentional priority in individuals with depressive symptoms. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 1221-1227.	2.0	57
74	Persistence of value-driven attentional capture Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 6-9.	0.9	163
75	A value-driven mechanism of attentional selection. Journal of Vision, 2013, 13, 7-7.	0.3	227
76	Attentional bias for nondrug reward is magnified in addiction Experimental and Clinical Psychopharmacology, 2013, 21, 499-506.	1.8	113
77	Reward predictions bias attentional selection. Frontiers in Human Neuroscience, 2013, 7, 262.	2.0	88
78	Reinforcement learning modulates the stability of cognitive control settings for object selection. Frontiers in Integrative Neuroscience, 2013, 7, 95.	2.1	6
79	Contingent involuntary motoric inhibition: The involuntary inhibition of a motor response contingent on top-down goals Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1348-1352.	0.9	13
80	Generalization of value-based attentional priority. Visual Cognition, 2012, 20, 647-658.	1.6	103
81	Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention, Perception, and Psychophysics, 2012, 74, 1183-1198.	1.3	48
82	Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, and Psychophysics, 2012, 74, 1644-1653.	1.3	149
83	Learned Value Magnifies Salience-Based Attentional Capture. PLoS ONE, 2011, 6, e27926.	2.5	229
84	Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10367-10371.	7.1	857
85	Variations in the magnitude of attentional capture: Testing a two-process model. Attention, Perception, and Psychophysics, 2010, 72, 342-352.	1.3	73
86	Target-uncertainty effects in attentional capture: Color-singleton set or multiple attentional control settings?. Psychonomic Bulletin and Review, 2010, 17, 421-426.	2.8	78