
Frank McCormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563576/publications.pdf Version: 2024-02-01

FRANK MCCORMICK

#	Article	IF	CITATIONS
1	\hat{I}^2 -Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 1999, 398, 422-426.	27.8	3,405
2	The GTPase superfamily: conserved structure and molecular mechanism. Nature, 1991, 349, 117-127.	27.8	3,349
3	The GTPase superfamily: a conserved switch for diverse cell functions. Nature, 1990, 348, 125-132.	27.8	2,407
4	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
5	RAS Proteins and Their Regulators in Human Disease. Cell, 2017, 170, 17-33.	28.9	1,262
6	Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551, 247-250.	27.8	1,043
7	The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell, 1990, 63, 843-849.	28.9	949
8	An essential role for Rac in Ras transformation. Nature, 1995, 374, 457-459.	27.8	877
9	Dragging Ras Back in the Ring. Cancer Cell, 2014, 25, 272-281.	16.8	707
10	Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nature Reviews Cancer, 2014, 14, 455-467.	28.4	683
11	The 2.2 Ã crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RapIA and a GTP analogue. Nature, 1995, 375, 554-560.	27.8	632
12	PDGF \hat{I}^2 -receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell, 1990, 61, 125-133.	28.9	581
13	RAS-targeted therapies: is the undruggable drugged?. Nature Reviews Drug Discovery, 2020, 19, 533-552.	46.4	569
14	Loss of The Normal NF1 Allele from the Bone Marrow of Children with Type 1 Neurofibromatosis and Malignant Myeloid Disorders. New England Journal of Medicine, 1994, 330, 597-601.	27.0	423
15	Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell, 1992, 69, 275-281.	28.9	365
16	Basal Subtype and MAPK/ERK Kinase (MEK)-Phosphoinositide 3-Kinase Feedback Signaling Determine Susceptibility of Breast Cancer Cells to MEK Inhibition. Cancer Research, 2009, 69, 565-572.	0.9	340
17	Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature, 1991, 351, 576-579.	27.8	333
18	Signaling Specificity by Ras Family GTPases Is Determined by the Full Spectrum of Effectors They Regulate. Molecular and Cellular Biology, 2004, 24, 4943-4954.	2.3	287

#	Article	IF	CITATIONS
19	KRAS as a Therapeutic Target. Clinical Cancer Research, 2015, 21, 1797-1801.	7.0	262
20	Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7996-8001.	7.1	233
21	Adenovirus E4ORF1-Induced MYC Activation Promotes Host Cell Anabolic Glucose Metabolism and Virus Replication. Cell Metabolism, 2014, 19, 694-701.	16.2	209
22	K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling. Cell, 2015, 163, 1237-1251.	28.9	195
23	Oncogenic and Wild-type Ras Play Divergent Roles in the Regulation of Mitogen-Activated Protein Kinase Signaling. Cancer Discovery, 2013, 3, 112-123.	9.4	183
24	Chapter 1 Ras Signaling and Therapies. Advances in Cancer Research, 2009, 102, 1-17.	5.0	182
25	Suppression of c-ras transformation by GTPase-activating protein. Nature, 1990, 346, 754-756.	27.8	169
26	A Phosphatase Holoenzyme Comprised of Shoc2/Sur8 and the Catalytic Subunit of PP1 Functions as an M-Ras Effector to Modulate Raf Activity. Molecular Cell, 2006, 22, 217-230.	9.7	169
27	Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers. Cancer Research, 2020, 80, 1630-1643.	0.9	157
28	Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18519-18524.	7.1	153
29	Structural basis of recognition of farnesylated and methylated KRAS4b by PDEÎ′. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6766-E6775.	7.1	145
30	The metabolic landscape of RAS-driven cancers from biology to therapy. Nature Cancer, 2021, 2, 271-283.	13.2	139
31	A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes and Development, 2012, 26, 1421-1426.	5.9	127
32	Adenovirus-Mediated p14ARF Gene Transfer in Human Mesothelioma Cells. Journal of the National Cancer Institute, 2000, 92, 636-641.	6.3	120
33	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	17.5	120
34	KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nature Communications, 2021, 12, 1176.	12.8	107
35	ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Scientific Reports, 2020, 10, 10258.	3.3	105
36	Differential Effector Engagement by Oncogenic KRAS. Cell Reports, 2018, 22, 1889-1902.	6.4	101

#	Article	IF	CITATIONS
37	MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4508-4517.	7.1	97
38	Development of siRNA Payloads to Target <i>KRAS</i> -Mutant Cancer. Cancer Discovery, 2014, 4, 1182-1197.	9.4	93
39	K-Ras protein as a drug target. Journal of Molecular Medicine, 2016, 94, 253-258.	3.9	85
40	KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22122-22131.	7.1	85
41	EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3855-63.	7.1	84
42	Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nature Communications, 2019, 10, 3055.	12.8	81
43	Oncogene Mimicry as a Mechanism of Primary Resistance to BRAF Inhibitors. Cell Reports, 2014, 8, 1037-1048.	6.4	69
44	RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science, 2019, 363, 1226-1230.	12.6	66
45	Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Scientific Reports, 2015, 5, 15916.	3.3	65
46	Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nature Genetics, 2021, 53, 707-718.	21.4	61
47	SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10576-E10585.	7.1	59
48	Progress in targeting RAS with small molecule drugs. Biochemical Journal, 2019, 476, 365-374.	3.7	53
49	Enhanced MET Translation and Signaling Sustains K-Ras–Driven Proliferation under Anchorage-Independent Growth Conditions. Cancer Research, 2015, 75, 2851-2862.	0.9	52
50	The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7497-7502.	7.1	50
51	Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Scientific Reports, 2019, 9, 10512.	3.3	47
52	The duality of human oncoproteins: drivers of cancer and congenital disorders. Nature Reviews Cancer, 2020, 20, 383-397.	28.4	44
53	Machine learning–driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	44
54	KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophysical Journal, 2019, 116, 1049-1063.	0.5	41

#	Article	IF	CITATIONS
55	Sticking it to KRAS: Covalent Inhibitors Enter the Clinic. Cancer Cell, 2020, 37, 3-4.	16.8	41
56	Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Reports, 2020, 32, 107909.	6.4	41
57	Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. Journal of Biological Chemistry, 2019, 294, 2193-2207.	3.4	38
58	Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24258-24268.	7.1	34
59	ETSâ€ŧargeted therapy: can it substitute for MEK inhibitors?. Clinical and Translational Medicine, 2017, 6, 16.	4.0	30
60	AKT inactivation causes persistent drug tolerance to EGFR inhibitors. Pharmacological Research, 2015, 102, 132-137.	7.1	29
61	Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature, 2022, 609, 408-415.	27.8	28
62	Romidepsin Plus Liposomal Doxorubicin Is Safe and Effective in Patients with Relapsed or Refractory T-Cell Lymphoma: Results of a Phase I Dose-Escalation Study. Clinical Cancer Research, 2020, 26, 1000-1008.	7.0	26
63	Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. Journal of Biological Chemistry, 2020, 295, 1105-1119.	3.4	25
64	Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. Journal of Biological Chemistry, 2020, 295, 1105-1119.	3.4	25
65	c-Raf in KRas Mutant Cancers: A Moving Target. Cancer Cell, 2018, 33, 158-159.	16.8	23
66	Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. ELife, 2020, 9, .	6.0	23
67	SPRED proteins and their roles in signal transduction, development, and malignancy. Genes and Development, 2020, 34, 1410-1421.	5.9	22
68	Ras and the awd couple. Nature, 1991, 353, 390-391.	27.8	21
69	Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Therapy, 2019, 26, 277-286.	4.5	21
70	RAS interaction with Sin1 is dispensable for mTORC2 assembly and activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
71	Analysis of RAS protein interactions in living cells reveals a mechanism for pan-RAS depletion by membrane-targeted RAS binders. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12121-12130.	7.1	19
72	Fatty Acid Binding Protein 7 Is a Molecular Marker in Adenoid Cystic Carcinoma of the Salivary Glands: Implications for Clinical Significance. Translational Oncology, 2014, 7, 780-787.	3.7	17

#	Article	IF	CITATIONS
73	Cutaneous T-Cell Lymphoma PDX Drug Screening Platform Identifies Cooperation between Inhibitions of PI3Kα/δ and HDAC. Journal of Investigative Dermatology, 2021, 141, 364-373.	0.7	17
74	Second harmonic generation detection of Ras conformational changes and discovery of a small molecule binder. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17290-17297.	7.1	16
75	RAS-targeted therapies. Nature Reviews Drug Discovery, 2021, , .	46.4	14
76	UDP-glucose pyrophosphorylase 2, a regulator of glycogen synthesis and glycosylation, is critical for pancreatic cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2103592118.	7.1	14
77	The RAS GTPase RIT1 compromises mitotic fidelity through spindle assembly checkpoint suppression. Current Biology, 2021, 31, 3915-3924.e9.	3.9	14
78	Insights into the Cross Talk between Effector and Allosteric Lobes of KRAS from Methyl Conformational Dynamics. Journal of the American Chemical Society, 2022, 144, 4196-4205.	13.7	14
79	c-Kit Expression is Rate-Limiting for Stem Cell Factor-Mediated Disease Progression in Adenoid Cystic Carcinoma of the Salivary Glands. Translational Oncology, 2014, 7, 537-545.	3.7	13
80	A Covalent Calmodulin Inhibitor as a Tool to Study Cellular Mechanisms of K-Ras-Driven Stemness. Frontiers in Cell and Developmental Biology, 2021, 9, 665673.	3.7	13
81	More to the RAS Story: KRAS ^{G12C} Inhibition, Resistance Mechanisms, and Moving Beyond KRAS ^{G12C} . American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 205-217.	3.8	13
82	RAS at 40: Update from the RAS Initiative. Cancer Discovery, 2022, 12, 895-898.	9.4	12
83	The molecular functions of RIT1 and its contribution to human disease. Biochemical Journal, 2020, 477, 2755-2770.	3.7	11
84	Targeted mass-spectrometry-based assays enable multiplex quantification of receptor tyrosine kinase, MAP kinase, and AKT signaling. Cell Reports Methods, 2021, 1, 100015.	2.9	10
85	ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Molecular Cell, 2022, 82, 2443-2457.e7.	9.7	9
86	Establishment and characterization of an oral tongue squamous cell carcinoma cell line from a never-smoking patient. Oral Oncology, 2017, 69, 1-10.	1.5	8
87	Classical RAS proteins are not essential for paradoxical ERK activation induced by RAF inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
88	Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs. ELife, 2022, 11, .	6.0	8
89	Inhibition of MET Signaling with Ficlatuzumab in Combination with Chemotherapy in Refractory AML: Clinical Outcomes and High-Dimensional Analysis. Blood Cancer Discovery, 2021, 2, 434-449.	5.0	7
90	A brief history of RAS and the RAS Initiative. Advances in Cancer Research, 2022, 153, 1-27.	5.0	6

FRANK MCCORMICK

#	Article	IF	CITATIONS
91	Targeting CD70 in cutaneous T-cell lymphoma using an antibody-drug conjugate in patient-derived xenograft models. Blood Advances, 2022, 6, 2290-2302.	5.2	6
92	ETS1 inactivation causes innate drug resistance to EGFR inhibitors. Molecular and Cellular Oncology, 2016, 3, e1078924.	0.7	5
93	DoMY-Seq: A yeast two-hybrid–based technique for precision mapping of protein–protein interaction motifs. Journal of Biological Chemistry, 2021, 296, 100023.	3.4	5
94	Resistance to EGFR-targeted therapy by Ets-1 inactivation. Cell Cycle, 2015, 14, 3211-3212.	2.6	3
95	Sensitivity of Oncogenic KRAS-Expressing Cells to CDK9 Inhibition. SLAS Discovery, 2021, 26, 922-932.	2.7	1
96	Social Interactomes for Enabling Research Communities. Cancer Discovery, 2014, 4, 1265-1268.	9.4	0