
Richard Michalet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5562503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rainfall continentality, via the winter Gams angle, provides a new dimension to biogeographical distributions in the western United States. Global Ecology and Biogeography, 2021, 30, 384-397.	5.8	16
2	A Regional Assessment of Changes in Plant–Plant Interactions Along Topography Gradients in Tunisian Sebkhas. Ecosystems, 2021, 24, 1024-1037.	3.4	8
3	Direct and indirect facilitation affect community productivity through changes in functional diversity in an alpine system. Annals of Botany, 2021, 127, 241-249.	2.9	8
4	Shift from shortâ€ŧerm competition to facilitation with drought stress is due to a decrease in longâ€ŧerm facilitation. Oikos, 2021, 130, 29-40.	2.7	10
5	Contrasting responses of different functional groups stabilize community responses to a dominant shrub under global change. Journal of Ecology, 2021, 109, 1676-1689.	4.0	11
6	Are complementarity effects of species richness on productivity the strongest in speciesâ€rich communities?. Journal of Ecology, 2021, 109, 2038-2046.	4.0	21
7	Fire slightly decreases the competitive effects of a thorny cushion shrub in a semiâ€arid mountain steppe in the short term. Applied Vegetation Science, 2021, 24, e12575.	1.9	6
8	The role of physical disturbance for litter decomposition and nutrient cycling in coastal sand dunes. Ecological Engineering, 2021, 162, 106181.	3.6	4
9	Benefit versus cost tradeâ€offs of masting across seedâ€ŧoâ€seedling transition for a dominant subtropical forest species. Journal of Ecology, 2021, 109, 3087-3098.	4.0	9
10	Observations of Tidal Flat Sedimentation within a Native and an Exotic Spartina Species. Water (Switzerland), 2021, 13, 1566.	2.7	2
11	Artemisia sieberi shrubs have contrasting specific effects on understory species in Iranian steppes. Journal of Vegetation Science, 2021, 32, e13067.	2.2	3
12	Morphological and ecological responses of a managed coastal sand dune to experimental notches. Science of the Total Environment, 2021, 782, 146813.	8.0	17
13	Species stress tolerance and community competitive effects drive differences in species composition between calcareous and siliceous plant communities. Journal of Ecology, 2021, 109, 4132-4142.	4.0	8
14	Dominant woody plants alter soil microbial community composition during succession. Global Ecology and Conservation, 2021, 31, e01852.	2.1	3
15	Variation in biomass and nutrients allocation of Corydalis hendersonii on the Tibetan Plateau with increasing rainfall continentality and altitude. Ecological Indicators, 2021, 132, 108244.	6.3	4
16	Tree genotypes affect rock lichens and understory plants: examples of trophicâ€independent interactions. Ecology, 2021, , e03589.	3.2	2
17	The consistency of home-field advantage effects with varying climate conditions. Soil Biology and Biochemistry, 2020, 149, 107934.	8.8	10
18	Disentangling Large- and Small-Scale Abiotic and Biotic Factors Shaping Soil Microbial Communities in an Alpine Cushion Plant System. Frontiers in Microbiology, 2020, 11, 925.	3.5	25

#	Article	IF	CITATIONS
19	Species specificity challenges the predictability of facilitation along a regional desert gradient. Journal of Vegetation Science, 2020, 31, 887-898.	2.2	11
20	Coastal Dune Morphology Evolution Combining Lidar and UAV Surveys, Truc Vert beach 2011-2019. Journal of Coastal Research, 2020, 95, 163.	0.3	7
21	Beach-dune Recovery from the Extreme 2013-2014 Storms Erosion at Truc Vert Beach, Southwest France: New Insights from Ground-penetrating Radar. Journal of Coastal Research, 2020, 95, 588.	0.3	11
22	Intraspecific facilitation explains the spread of the invasive engineer Spartina anglica in Atlantic salt marshes. Journal of Vegetation Science, 2019, 30, 212-223.	2.2	14
23	Responses of different herb life-history groups to a dominant shrub species along a dune stabilization gradient. Basic and Applied Ecology, 2019, 38, 1-12.	2.7	11
24	Potential of High-Resolution Pléiades Imagery to Monitor Salt Marsh Evolution After Spartina Invasion. Remote Sensing, 2019, 11, 968.	4.0	14
25	Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. Journal of Marine Science and Engineering, 2019, 7, 63.	2.6	104
26	Stature of dependent forbs is more related to the direct and indirect above―and belowâ€ground effects of a subalpine shrub than are foliage traits. Journal of Vegetation Science, 2019, 30, 403-412.	2.2	8
27	Interactive effects of climate and topography on soil salinity and vegetation zonation in Northâ€African continental saline depressions. Journal of Vegetation Science, 2019, 30, 312-321.	2.2	13
28	Phenotypic effects of the nurse <i>Thylacospermum caespitosum</i> on dependent plant species along regional climate stress gradients. Oikos, 2018, 127, 252-263.	2.7	18
29	Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biology, 2018, 16, e2006852.	5.6	91
30	The balance of canopy and soil effects determines intraspecific differences in foundation species' effects on associated plants. Functional Ecology, 2018, 32, 2253-2263.	3.6	19
31	Benefactor facilitation and beneficiary feedback effects drive shrubâ€dominated community succession in a semiâ€arid dune ecosystem. Applied Vegetation Science, 2018, 21, 595-606.	1.9	24
32	Direct litter interference and indirect soil competitive effects of two contrasting phenotypes of a spiny legume shrub drive the forb composition of an oromediterranean community. Oikos, 2017, 126, 1090-1100.	2.7	18
33	Contrasting understorey species responses to the canopy and root effects of a dominant shrub drive community composition. Journal of Vegetation Science, 2017, 28, 1118-1127.	2.2	14
34	Facilitation in communities: underlying mechanisms, community and ecosystem implications. Functional Ecology, 2016, 30, 3-9.	3.6	94
35	Disentangling canopy and soil effects of a savanna tree species on its understorey. Journal of Vegetation Science, 2016, 27, 771-779.	2.2	11
36	The relative contribution of short-term versus long-term effects in shrub-understory species interactions under arid conditions. Oecologia, 2016, 180, 529-542.	2.0	34

#	Article	IF	CITATIONS
37	Beneficiary feedback effects on alpine cushion benefactors become more negative with increasing cover of graminoids and in dry conditions. Functional Ecology, 2016, 30, 79-87.	3.6	38
38	Disentangling the heritable and plastic components of the competitive and facilitative effects of an alpine foundation species. Journal of Ecology, 2015, 103, 1172-1182.	4.0	20
39	Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub. PLoS ONE, 2015, 10, e0130886.	2.5	11
40	The effects of foundation species on community assembly: a global study on alpine cushion plant communities. Ecology, 2015, 96, 2064-2069.	3.2	53
41	Disentangling direct and indirect effects of a legume shrub on its understorey community. Oikos, 2015, 124, 1251-1262.	2.7	53
42	Limitations to the use of facilitation as a restoration tool in arid grazed savanna: a case study. Applied Vegetation Science, 2015, 18, 391-401.	1.9	35
43	Competition, facilitation and environmental severity shape the relationship between local and regional species richness in plant communities. Ecography, 2015, 38, 335-345.	4.5	64
44	Differential effects of contrasting phenotypes of a foundation legume shrub drive plant–plant interactions in a <scp>M</scp> editerranean mountain. Journal of Vegetation Science, 2015, 26, 373-384.	2.2	19
45	Communities: are they groups of hidden interactions?. Journal of Vegetation Science, 2015, 26, 207-218.	2.2	58
46	The context dependence of beneficiary feedback effects on benefactors in plant facilitation. New Phytologist, 2014, 204, 386-396.	7.3	37
47	Facilitation displaces hotspots of diversity and allows communities to persist in heavily stressed and disturbed environments. Journal of Vegetation Science, 2014, 25, 66-76.	2.2	33
48	Phenotypic differentiation within a foundation grass species correlates with species richness in a subalpine community. Oecologia, 2014, 176, 533-544.	2.0	25
49	Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Functional Ecology, 2014, 28, 75-86.	3.6	120
50	Importance, but not intensity of plant interactions relates to species diversity under the interplay of stress and disturbance. Oikos, 2014, 123, 777-785.	2.7	48
51	A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist, 2014, 202, 95-105.	7.3	79
52	Two alternatives to the stressâ€gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. Journal of Vegetation Science, 2014, 25, 609-613.	2.2	157
53	Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecology Letters, 2014, 17, 193-202.	6.4	274
54	Do indirect interactions always contribute to net indirect facilitation?. Ecological Modelling, 2013, 268, 1-8.	2.5	11

#	Article	IF	CITATIONS
55	Ecological resistance to <i>Acer negundo</i> invasion in a European riparian forest: relative importance of environmental and biotic drivers. Applied Vegetation Science, 2013, 16, 184-192.	1.9	11
56	Disentangling the effects of water and nutrients for studying the outcome of plant interactions in sand dune ecosystems. Journal of Vegetation Science, 2013, 24, 375-383.	2.2	40
57	The role of biotic interactions for the early establishment of oak seedlings in coastal dune forest communities. Forest Ecology and Management, 2013, 297, 67-74.	3.2	45
58	The interplay of stress and mowing disturbance for the intensity and importance of plant interactions in dry calcareous grasslands. Annals of Botany, 2012, 110, 821-828.	2.9	62
59	Integrating climate change into calcareous grassland management. Journal of Applied Ecology, 2012, 49, 795-802.	4.0	21
60	Phenotypic variation in nurse traits and community feedbacks define an alpine community. Ecology Letters, 2011, 14, 433-443.	6.4	115
61	Does disturbance drive the collapse of biotic interactions at the severe end of a diversity–biomass gradient?. Plant Ecology, 2010, 206, 287-295.	1.6	48
62	<i>Acer negundo</i> invasion along a successional gradient: early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytologist, 2010, 187, 831-842.	7.3	109
63	Facilitation of <i>Quercus ilex</i> in Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 2010, 98, 687-696.	4.0	116
64	Biotic Interactions, Biodiversity, and Community Productivity. , 2010, , 59-78.		6
65	Grass-to-tree facilitation in an arid grazed environment (AÃ⁻r Mountains, Sahara). Basic and Applied Ecology, 2009, 10, 437-446.	2.7	57
66	The interplay between species' positive and negative interactions shapes the community biomass–species richness relationship. Oikos, 2009, 118, 1343-1348.	2.7	47
67	The role of biotic interactions in altering tree seedling responses to an extreme climatic event. Journal of Vegetation Science, 2009, 20, 403-414.	2.2	62
68	Don't Diss Integration: A Comment on Ricklefs's Disintegrating Communities. American Naturalist, 2009, 174, 919-927.	2.1	83
69	Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 2008, 96, 18-34.	4.0	788
70	The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. Journal of Vegetation Science, 2008, 19, 493-502.	2.2	87
71	Highlighting the multiple drivers of change in interactions along stress gradients. New Phytologist, 2007, 173, 3-6.	7.3	96
72	Do biotic interactions shape both sides of the humped-back model of species richness in plant communities?. Ecology Letters, 2006, 9, 767-773.	6.4	517

#	Article	IF	CITATIONS
73	ls facilitation in arid environments the result of direct or complex interactions?. New Phytologist, 2006, 169, 3-6.	7.3	107
74	Contrasted Responses of Two Understorey Species to Direct and Indirect Effects of a Canopy Gap. Plant Ecology, 2006, 187, 179-187.	1.6	21
75	The importance of importance. Oikos, 2005, 109, 63-70.	2.7	289
76	STRESS TOLERANCE AND COMPETITIVE-RESPONSE ABILITY DETERMINE THE OUTCOME OF BIOTIC INTERACTIONS. Ecology, 2005, 86, 1611-1618.	3.2	369
77	Rethinking plant community theory. Oikos, 2004, 107, 433-438.	2.7	479
78	A test of the indirect facilitation model in a temperate hardwood forest of the northern French Alps. Journal of Ecology, 2003, 91, 932-940.	4.0	52
79	The relative importance of competition for two dominant grass species as affected by environmental manipulations in the field. Ecoscience, 2003, 10, 186-194.	1.4	50
80	Plant Community Composition and Biomass on Calcareous and Siliceous Substrates in the Northern French Alps: Comparative Effects of Soil Chemistry and Water Status. Arctic, Antarctic, and Alpine Research, 2002, 34, 102.	1.1	40
81	Plant Community Composition and Biomass on Calcareous and Siliceous Substrates in the Northern French Alps: Comparative Effects of Soil Chemistry and Water Status. Arctic, Antarctic, and Alpine Research, 2002, 34, 102-113.	1.1	62
82	Positive interactions among alpine plants increase with stress. Nature, 2002, 417, 844-848.	27.8	1,821
83	Niche differentiation and distribution of Carex curvula along a bioclimatic gradient in the southwestern Alps. Journal of Vegetation Science, 2002, 13, 851-858.	2.2	34
84	FACILITATION AND COMPETITION ON GRADIENTS IN ALPINE PLANT COMMUNITIES. Ecology, 2001, 82, 3295-3308.	3.2	579
85	Dendroécologie comparée du sapin blanc (<i>Abies alba</i>) et de l'épicéa commun (<i>Picea abies</i>) dans une vallée alpine de France. Canadian Journal of Forest Research, 1998, 28, 737-748.	1.7	40
86	Effect and response traits in severe environments in the context of positive plant–plant interactions. A commentary on: †Interspecific interactions alter plant functional strategies in a revegetated shrub-dominated community in the Mu Us Desert'. Annals of Botany, 0, , .	2.9	4