Carlo Rondinini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5562281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge. Science, 2008, 322, 225-230.	6.0	1,215
2	The Impact of Conservation on the Status of the World's Vertebrates. Science, 2010, 330, 1503-1509.	6.0	1,209
3	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	6.0	949
4	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	6.0	883
5	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	8.1	856
6	Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 2017, 8, 1124.	5.8	645
7	Targeting Global Protected Area Expansion for Imperiled Biodiversity. PLoS Biology, 2014, 12, e1001891.	2.6	430
8	Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 2006, 9, 1136-1145.	3.0	403
9	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	2.6	398
10	Shortfalls and Solutions for Meeting National and Global Conservation Area Targets. Conservation Letters, 2015, 8, 329-337.	2.8	350
11	Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7635-7640.	3.3	317
12	Species' traits influenced their response to recent climate change. Nature Climate Change, 2017, 7, 205-208.	8.1	272
13	Imputation of missing data in lifeâ€history trait datasets: which approach performs the best?. Methods in Ecology and Evolution, 2014, 5, 961-970.	2.2	258
14	Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2642-2651.	1.8	251
15	Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2633-2641.	1.8	240
16	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	6.0	225
17	Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the United States of America, 2017, 114, 7641-7646.	3.3	213
18	Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 2015, 187, 103-111.	1.9	189

#	Article	IF	CITATIONS
19	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	2.8	182
20	Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends in Ecology and Evolution, 2019, 34, 977-986.	4.2	181
21	Ecological Networks as Conceptual Frameworks or Operational Tools in Conservation. Conservation Biology, 2007, 21, 1414-1422.	2.4	168
22	Roads as barriers to movement for hedgehogs. Functional Ecology, 2002, 16, 504-509.	1.7	160
23	Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30882-30891.	3.3	160
24	Generation length for mammals. Nature Conservation, 0, 5, 89-94.	0.0	144
25	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	3.4	131
26	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	1.7	127
27	Habitat Suitability Models and the Shortfall in Conservation Planning for African Vertebrates. Conservation Biology, 2005, 19, 1488-1497.	2.4	124
28	A gap analysis of Southeast Asian mammals based on habitat suitability models. Biological Conservation, 2008, 141, 2730-2744.	1.9	115
29	How many bird and mammal extinctions has recent conservation action prevented?. Conservation Letters, 2021, 14, e12762.	2.8	113
30	Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling, 2007, 209, 314-322.	1.2	108
31	Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2693-2702.	1.8	107
32	An evaluation of the robustness of global amphibian range maps. Journal of Biogeography, 2014, 41, 211-221.	1.4	103
33	Habitat availability for amphibians and extinction threat: a global analysis. Diversity and Distributions, 2015, 21, 302-311.	1.9	103
34	Species and functional diversity accumulate differently in mammals. Global Ecology and Biogeography, 2016, 25, 1119-1130.	2.7	103
35	Connectivity of the global network of protected areas. Diversity and Distributions, 2016, 22, 199-211.	1.9	103
36	Proactive conservation to prevent habitat losses to agricultural expansion. Nature Sustainability, 2021, 4, 314-322.	11.5	101

3

#	Article	IF	CITATIONS
37	What spatial data do we need to develop global mammal conservation strategies?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2623-2632.	1.8	99
38	Update or Outdate: Longâ€Term Viability of the IUCN Red List. Conservation Letters, 2014, 7, 126-130.	2.8	96
39	Effects of Consumptive Water Use on Biodiversity in Wetlands of International Importance. Environmental Science & Technology, 2013, 47, 12248-12257.	4.6	95
40	Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.	1.9	92
41	Global conservation of species' niches. Nature, 2020, 580, 232-234.	13.7	89
42	Toward quantification of the impact of 21stâ€century deforestation on the extinction risk of terrestrial vertebrates. Conservation Biology, 2016, 30, 1070-1079.	2.4	88
43	The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2681-2692.	1.8	87
44	Ecological–economic optimization of biodiversity conservation under climate change. Nature Climate Change, 2011, 1, 355-359.	8.1	85
45	A global map of terrestrial habitat types. Scientific Data, 2020, 7, 256.	2.4	85
46	A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera). Fragmenta Entomologica, 2015, 47, 53.	0.4	83
47	Global Trends in the Status of Bird and Mammal Pollinators. Conservation Letters, 2015, 8, 397-403.	2.8	82
48	Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe. PLoS ONE, 2013, 8, e74989.	1.1	79
49	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	4.2	79
50	Assessing the umbrella value of a rangeâ€wide conservation network for jaguars (<i>Panthera) Tj ETQq0 0 0 rgl</i>	BT /Oyerlo	ck 10 Tf 50 22
51	Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications, 2020, 11, 2840.	5.8	68
52	Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Scientific Data, 2016, 3, 160007.	2.4	67
53	Assessing the Cost of Global Biodiversity and Conservation Knowledge. PLoS ONE, 2016, 11, e0160640.	1.1	65
54	Performance tradeoffs in targetâ€group bias correction for species distribution models. Ecography, 2017, 40, 1076-1087.	2.1	65

Carlo Rondinini

#	Article	IF	CITATIONS
55	Restoring degraded tropical forests for carbon and biodiversity. Environmental Research Letters, 2014, 9, 114020.	2.2	62
56	Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. Mammal Review, 2010, 40, 125-154.	2.2	61
57	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
58	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	3.4	61
59	Quantitative methods for defining percentage area targets for habitat types in conservation planning. Biological Conservation, 2010, 143, 1646-1653.	1.9	60
60	A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic and Applied Ecology, 2014, 15, 633-638.	1.2	58
61	Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.	4.2	58
62	Habitat use by beech martens in a fragmented landscape. Ecography, 2002, 25, 257-264.	2.1	57
63	Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth, 2022, 5, 597-603.	3.6	57
64	Applying habitat and populationâ€density models to landâ€cover time series to inform IUCN Red List assessments. Conservation Biology, 2019, 33, 1084-1093.	2.4	56
65	Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2670-2680.	1.8	54
66	Change the IUCN Protected Area Categories to Reflect Biodiversity Outcomes. PLoS Biology, 2008, 6, e66.	2.6	53
67	Distribution of medium- to large-sized African mammals based on habitat suitability models. Biodiversity and Conservation, 2008, 17, 605-621.	1.2	50
68	COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. Ecology, 2021, 102, e03344.	1.5	50
69	Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130198.	1.8	49
70	High-Resolution Assessment of Land Use Impacts on Biodiversity in Life Cycle Assessment Using Species Habitat Suitability Models. Environmental Science & Technology, 2015, 49, 2237-2244.	4.6	47
71	The key elements of a comprehensive global mammal conservation strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2591-2597.	1.8	46
72	Synergies between the key biodiversity area and systematic conservation planning approaches. Conservation Letters, 2019, 12, e12625.	2.8	46

#	Article	IF	CITATIONS
73	Projected Global Loss of Mammal Habitat Due to Land-Use and Climate Change. One Earth, 2020, 2, 578-585.	3.6	46
74	A framework for the identification of hotspots of climate change risk for mammals. Global Change Biology, 2018, 24, 1626-1636.	4.2	45
75	How can you conserve species that haven't been found?. Journal of Biogeography, 2007, 34, 758-759.	1.4	41
76	Role of African protected areas in maintaining connectivity for large mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130193.	1.8	40
77	Challenging the Scientific Foundations for an IUCN Red List of Ecosystems. Conservation Letters, 2015, 8, 125-131.	2.8	38
78	Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161028.	1.2	38
79	A novel approach for global mammal extinction risk reduction. Conservation Letters, 2012, 5, 134-141.	2.8	37
80	Shifting baseline in macroecology? Unravelling the influence of human impact on mammalian body mass. Diversity and Distributions, 2017, 23, 640-649.	1.9	37
81	Synergies and tradeâ€offs in achieving global biodiversity targets. Conservation Biology, 2016, 30, 189-195.	2.4	36
82	The first red list of Italian butterflies. Insect Conservation and Diversity, 2018, 11, 506-521.	1.4	36
83	Comparing multiple species distribution proxies and different quantifications of the human footprint map, implications for conservation. Biological Conservation, 2013, 165, 203-211.	1.9	35
84	Geography of current and future global mammal extinction risk. PLoS ONE, 2017, 12, e0186934.	1.1	34
85	Systematic Conservation Planning and the Cost of Tackling Conservation Conflicts with Large Carnivores in Italy. Conservation Biology, 2007, 21, 1455-1462.	2.4	32
86	High human density in the irreplaceable sites for African vertebrates conservation. Biological Conservation, 2006, 133, 358-363.	1.9	31
87	Historical drivers of extinction risk: using past evidence to direct future monitoring. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150928.	1.2	30
88	Setting population targets for mammals using body mass as a predictor of population persistence. Conservation Biology, 2017, 31, 385-393.	2.4	25
89	Species richness and distribution of Neotropical rodents, with conservation implications. Mammalia, 2013, 77, 1-19.	0.3	24
90	Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.	2.4	24

Carlo Rondinini

#	Article	IF	CITATIONS
91	Global Biodiversity Indicators Reflect the Modeled Impacts of Protected Area Policy Change. Conservation Letters, 2016, 9, 14-20.	2.8	24
92	Global protected areas seem insufficient to safeguard half of the world's mammals from human-induced extinction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
93	Differences in the Umbrella Effects of African Amphibians and Mammals Based on Two Estimators of the Area of Occupancy. Conservation Biology, 2006, 20, 170-179.	2.4	23
94	Scenarios of large mammal loss in Europe for the 21 st century. Conservation Biology, 2015, 29, 1028-1036.	2.4	23
95	Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nature Communications, 2022, 13, 595.	5.8	21
96	A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation. PLoS ONE, 2016, 11, e0164794.	1.1	20
97	DAMA: the global Distribution of Alien Mammals database. Ecology, 2021, 102, e03474.	1.5	20
98	Introduction, spread, and impacts of invasive alien mammal species in Europe. Mammal Review, 2022, 52, 252-266.	2.2	19
99	Drivers of change in the realised climatic niche of terrestrial mammals. Ecography, 2021, 44, 1180-1190.	2.1	18
100	Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 2018, 45, 225-237.	1.4	17
101	Measuring the surrogacy potential of charismatic megafauna species across taxonomic, phylogenetic and functional diversity on a megadiverse island. Journal of Applied Ecology, 2019, 56, 1220-1231.	1.9	17
102	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	1.8	16
103	Open access and academic imperialism. Conservation Biology, 2019, 33, 5-6.	2.4	16
104	Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology, 2022, 36, .	2.4	13
105	Long-term effects of prenatal 3'-azido-3'-deoxythymidine (AZT) exposure on intermale aggressive behaviour of mice. Psychopharmacology, 1999, 145, 317-323.	1.5	12
106	Country-based patterns of total species richness, endemicity, and threatened species richness in African rodents and insectivores. Biodiversity and Conservation, 2011, 20, 1225-1237.	1.2	11
107	Spatial turnover and knowledge gap of African small mammals: using country checklists as a conservation tool. Biodiversity and Conservation, 2012, 21, 1755-1793.	1.2	10
108	The Opportunity Cost of Conserving Amphibians and Mammals in Uganda. Natureza A Conservacao, 2010, 08, 177-183.	2.5	9

#	Article	IF	CITATIONS
109	<i>Special Section: Systematic Conservation Planning in the European Landscape: Conflicts, Environmental Changes, and the Challenge of Countdown 2010</i> . Conservation Biology, 2007, 21, 1404-1405.	2.4	8
110	Mind the map: trips and pitfalls in making and reading maps of carnivore distribution. , 2012, , 31-46.		8
111	Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park. Biological Conservation, 2015, 191, 313-321.	1.9	7
112	Small terrestrial mammals of Albania: distribution and diversity (Mammalia, Eulipotyphla, Rodentia). ZooKeys, 2018, 742, 127-163.	0.5	5
113	Geographic distribution ranges of terrestrial mammal species in the 1970s. Ecology, 2019, 100, e02747.	1.5	5
114	Maps of area of habitat for Italian amphibians and reptiles. Nature Conservation, 0, 49, 117-129.	0.0	5
115	A validation standard for area of habitat maps for terrestrial birds and mammals. Geoscientific Model Development, 2022, 15, 5093-5105.	1.3	3
116	Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). , 2015, , .		2
117	BioNNA: the Biodiversity National Network of Albania. Nature Conservation, 0, 25, 77-88.	0.0	2
118	Plan S and publishing: reply to LehtomÃki etÂal. 2019. Conservation Biology, 2019, 33, 1203-1204.	2.4	0