Markus Grompe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5562015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine, 2000, 6, 1229-1234.	30.7	2,255
2	Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003, 422, 897-901.	27.8	1,537
3	A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349, 38-44.	27.8	1,357
4	In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494, 247-250.	27.8	1,239
5	Interaction of the Fanconi Anemia Proteins and BRCA1 in a Common Pathway. Molecular Cell, 2001, 7, 249-262.	9.7	1,125
6	Biallelic Inactivation of <i>BRCA2</i> in Fanconi Anemia. Science, 2002, 297, 606-609.	12.6	1,072
7	Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 2014, 32, 551-553.	17.5	823
8	The Fanconi anaemia/BRCA pathway. Nature Reviews Cancer, 2003, 3, 23-34.	28.4	764
9	Robust expansion of human hepatocytes in Fahâ^'/â^'/Rag2â^'/â^'/ll2rgâ^'/â^' mice. Nature Biotechnology, 2007, 25, 903-910.	17.5	729
10	Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nature Communications, 2018, 9, 5068.	12.8	584
11	Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nature Genetics, 1996, 12, 266-273.	21.4	546
12	Generation and Regeneration of Cells of the Liver and Pancreas. Science, 2008, 322, 1490-1494.	12.6	530
13	Characterization of a murine gene expressed from the inactive X chromosome. Nature, 1991, 351, 325-329.	27.8	527
14	Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1826-34.	7.1	492
15	Stem Cells and Liver Regeneration. Gastroenterology, 2009, 137, 466-481.	1.3	469
16	The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 2010, 467, 707-710.	27.8	432
17	Bipotential Adult Liver Progenitors Are Derived from Chronically Injured Mature Hepatocytes. Cell Stem Cell, 2014, 15, 605-618.	11.1	427
18	S-phase–specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 2002, 100, 2414-2420.	1.4	426

#	Article	IF	CITATIONS
19	Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nature Medicine, 2004, 10, 744-748.	30.7	409
20	The origin and liver repopulating capacity of murine oval cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11881-11888.	7.1	399
21	Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature, 2014, 506, 382-386.	27.8	376
22	Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2. Molecular Cell, 2001, 7, 241-248.	9.7	370
23	Epigenomic plasticity enables human pancreatic α to β cell reprogramming. Journal of Clinical Investigation, 2013, 123, 1275-1284.	8.2	365
24	AAV serotype 2 vectors preferentially integrate into active genes in mice. Nature Genetics, 2003, 34, 297-302.	21.4	359
25	Proliferation, But Not Growth, Blocked by Conditional Deletion of 40S Ribosomal Protein S6. Science, 2000, 288, 2045-2047.	12.6	350
26	The Multiple Sulfatase Deficiency Gene Encodes an Essential and Limiting Factor for the Activity of Sulfatases. Cell, 2003, 113, 445-456.	28.9	321
27	The rapid detection of unknown mutations in nucleic acids. Nature Genetics, 1993, 5, 111-117.	21.4	316
28	Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genetics, 1995, 10, 453-460.	21.4	303
29	Human islets contain four distinct subtypes of \hat{I}^2 cells. Nature Communications, 2016, 7, 11756.	12.8	291
30	Bone Marrow Failure in Fanconi Anemia Is Triggered by an Exacerbated p53/p21 DNA Damage Response that Impairs Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2012, 11, 36-49.	11.1	262
31	Directed differentiation of cholangiocytes from human pluripotent stem cells. Nature Biotechnology, 2015, 33, 853-861.	17.5	254
32	Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proceedings of the United States of America, 2006, 103, 6321-6325.	7.1	250
33	Epithelial cancer in Fanconi anemia complementation group D2 (<i>Fancd2</i>) knockout mice. Genes and Development, 2003, 17, 2021-2035.	5.9	240
34	Kinetics of Liver Repopulation after Bone Marrow Transplantation. American Journal of Pathology, 2002, 161, 565-574.	3.8	233
35	Repair Kinetics of Genomic Interstrand DNA Cross-Links: Evidence for DNA Double-Strand Break-Dependent Activation of the Fanconi Anemia/BRCA Pathway. Molecular and Cellular Biology, 2004, 24, 123-134.	2.3	215
36	Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell, 2018, 175, 1607-1619.e15.	28.9	211

#	Article	IF	CITATIONS
37	Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes and Development, 2011, 25, 1193-1203.	5.9	209
38	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
39	Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. Journal of Clinical Investigation, 2012, 122, 3618-3628.	8.2	200
40	Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. Journal of Clinical Investigation, 2006, 116, 3070-3082.	8.2	197
41	Transcriptomes of the major human pancreatic cell types. Diabetologia, 2011, 54, 2832-44.	6.3	194
42	Molecular Biology of Fanconi Anemia: Implications for Diagnosis and Therapy. Blood, 1997, 90, 1725-1736.	1.4	192
43	Mutations in PHF6 are associated with Börjeson–Forssman–Lehmann syndrome. Nature Genetics, 2002, 32, 661-665.	21.4	192
44	Clonal tracing of Sox9 ⁺ liver progenitors in mouse oval cell injury. Hepatology, 2014, 60, 278-289.	7.3	190
45	Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature, 2019, 567, 43-48.	27.8	188
46	Myeloid lineage progenitors give rise to vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13156-13161.	7.1	184
47	DNA Replication Is Required To Elicit Cellular Responses to Psoralen-Induced DNA Interstrand Cross-Links. Molecular and Cellular Biology, 2000, 20, 8283-8289.	2.3	183
48	Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. Journal of Experimental Medicine, 2011, 208, 1963-1976.	8.5	183
49	The Repopulation Potential of Hepatocyte Populations Differing in Size and Prior Mitotic Expansion. American Journal of Pathology, 1999, 155, 2135-2143.	3.8	176
50	Frequent Aneuploidy Among Normal Human Hepatocytes. Gastroenterology, 2012, 142, 25-28.	1.3	175
51	Inactivation of the Fanconi Anemia Group C Gene Augments Interferon-γ–Induced Apoptotic Responses in Hematopoietic Cells. Blood, 1997, 90, 974-985.	1.4	165
52	Large-Scale Molecular Characterization of Adeno-Associated Virus Vector Integration in Mouse Liver. Journal of Virology, 2005, 79, 3606-3614.	3.4	164
53	A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nature Genetics, 1993, 4, 202-205.	21.4	161
54	Fanconi anemia and DNA repair. Human Molecular Genetics, 2001, 10, 2253-2259.	2.9	159

#	Article	IF	CITATIONS
55	The Pathophysiology and Treatment of Hereditary Tyrosinemia Type 1. Seminars in Liver Disease, 2001, 21, 563-572.	3.6	155
56	Stem cells versus plasticity in liver and pancreas regeneration. Nature Cell Biology, 2016, 18, 238-245.	10.3	152
57	Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genetics in Medicine, 2017, 19, 1380-1395.	2.4	152
58	Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nature Genetics, 2001, 29, 212-216.	21.4	149
59	Aneuploidy as a mechanism for stress-induced liver adaptation. Journal of Clinical Investigation, 2012, 122, 3307-3315.	8.2	147
60	Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes and Development, 2011, 25, 1185-1192.	5.9	138
61	In Vivo Correction of Murine Tyrosinemia Type I by DNA-Mediated Transposition. Molecular Therapy, 2002, 6, 759-769.	8.2	137
62	A Single Mutation of the Fumarylacetoacetate Hydrolase Gene in French Canadians with Hereditary Tyrosinemia Type I. New England Journal of Medicine, 1994, 331, 353-357.	27.0	136
63	Microcell mediated chromosome transfer maps the Fanconi anaemia group D gene to chromosome 3p. Nature Genetics, 1995, 11, 341-343.	21.4	133
64	Chimeric Mice with Humanized Liver: Tools for the Study of Drug Metabolism, Excretion, and Toxicity. Methods in Molecular Biology, 2010, 640, 491-509.	0.9	133
65	Anthracyclines Induce DNA Damage Response-Mediated Protection against Severe Sepsis. Immunity, 2013, 39, 874-884.	14.3	131
66	Bioengineered AAV Capsids with Combined High Human Liver Transduction InÂVivo and Unique Humoral Seroreactivity. Molecular Therapy, 2018, 26, 289-303.	8.2	130
67	Scanning detection of mutations in human ornithine transcarbamoylase by chemical mismatch cleavage Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5888-5892.	7.1	129
68	Non-Invasive Stem Cell Therapy in a Rat Model for Retinal Degeneration and Vascular Pathology. PLoS ONE, 2010, 5, e9200.	2.5	129
69	InÂVivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration. Cell Stem Cell, 2020, 26, 34-47.e3.	11.1	129
70	In Vivo Correction of Murine Hereditary Tyrosinemia Type I by ϕC31 Integrase-Mediated Gene Delivery. Molecular Therapy, 2005, 11, 399-408.	8.2	128
71	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	16.2	126
72	TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell, 2016, 18, 668-681.	11.1	125

#	Article	IF	CITATIONS
73	Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Research, 2014, 13, 404-412.	0.7	123
74	Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology, 2010, 51, 1200-1208.	7.3	121
75	Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood, 2005, 105, 1003-1009.	1.4	118
76	Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Human Mutation, 2003, 22, 442-450.	2.5	117
77	Hypomorphic Mutations in the Gene Encoding a Key Fanconi Anemia Protein, FANCD2, Sustain a Significant Group of FA-D2 Patients with Severe Phenotype. American Journal of Human Genetics, 2007, 80, 895-910.	6.2	115
78	Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nature Communications, 2017, 8, 331.	12.8	115
79	Liver Repopulation and Correction of Metabolic Liver Disease by Transplanted Adult Mouse Pancreatic Cells. American Journal of Pathology, 2001, 158, 571-579.	3.8	114
80	Mice With Human Livers. Gastroenterology, 2013, 145, 1209-1214.	1.3	114
81	Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers. Stem Cell Research, 2008, 1, 183-194.	0.7	110
82	BRCA1 interacts directly with the Fanconi anemia protein FANCA. Human Molecular Genetics, 2002, 11, 2591-2597.	2.9	101
83	Microphthalmia with linear skin defects (MLS) syndrome: Clinical, cytogenetic, and molecular characterization. American Journal of Medical Genetics Part A, 1994, 49, 229-234.	2.4	100
84	The Role of Bone Marrow Stem Cells in Liver Regeneration. Seminars in Liver Disease, 2003, 23, 363-372.	3.6	94
85	Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA. JCI Insight, 2018, 3, .	5.0	94
86	Fibroblast Growth Factor Signaling Controls Liver Size in Mice With Humanized Livers. Gastroenterology, 2015, 149, 728-740.e15.	1.3	93
87	A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell, 2017, 20, 478-489.e5.	11.1	92
88	Ploidy Reductions in Murine Fusion-Derived Hepatocytes. PLoS Genetics, 2009, 5, e1000385.	3.5	91
89	Maleylacetoacetate Isomerase (MAAI/GSTZ)-Deficient Mice Reveal a Glutathione-Dependent Nonenzymatic Bypass in Tyrosine Catabolism. Molecular and Cellular Biology, 2002, 22, 4943-4951. -	2.3	89
90	Surface markers for the murine oval cell response. Hepatology, 2008, 48, 1282-1291.	7.3	85

#	Article	IF	CITATIONS
91	Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure. Gastroenterology, 2019, 157, 552-568.	1.3	85
92	Principles of Therapeutic Liver Repopulation. Seminars in Liver Disease, 1999, 19, 7-14.	3.6	84
93	Fancd2 â^'/â^' mice have hematopoietic defects that can be partially corrected by resveratrol. Blood, 2010, 116, 5140-5148.	1.4	83
94	p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology, 2013, 57, 2004-2013.	7.3	83
95	Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood, 2002, 100, 2732-2736.	1.4	82
96	Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia. Carcinogenesis, 2002, 23, 1121-1126.	2.8	81
97	Therapeutic Intervention in Mice Deficient for Succinate Semialdehyde Dehydrogenase (γ-Hydroxybutyric Aciduria). Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 180-187.	2.5	81
98	Deficiencies in the Fanconi Anemia DNA Damage Response Pathway Increase Sensitivity to HPV-Associated Head and Neck Cancer. Cancer Research, 2010, 70, 9959-9968.	0.9	81
99	Chromosomal Integration of Adenoviral Vector DNA <i>In Vivo</i> . Journal of Virology, 2010, 84, 9987-9994.	3.4	77
100	Natural gene therapy in monozygotic twins with Fanconi anemia. Blood, 2006, 107, 3084-3090.	1.4	76
101	Liver Stem Cells, Where Art Thou?. Cell Stem Cell, 2014, 15, 257-258.	11.1	73
102	DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood, 1998, 91, 275-287.	1.4	71
103	The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Research, 2014, 13, 275-283.	0.7	71
104	Adenovirus-Mediated Gene Therapy in a Mouse Model of Hereditary Tyrosinemia Type I. Human Gene Therapy, 1997, 8, 513-521.	2.7	69
105	Efficient production of <i>Fah</i> -null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology, 2011, 54, 1351-1359.	7.3	69
106	<i>Ex Vivo</i> Hepatic Gene Therapy of a Mouse Model of Hereditary Tyrosinemia Type I. Human Gene Therapy, 1998, 9, 295-304.	2.7	68
107	The 4N Cell Cycle Delay in Fanconi Anemia Reflects Growth Arrest in Late S Phase. Molecular Genetics and Metabolism, 2001, 74, 403-412.	1.1	68
108	Adult Mouse Liver Contains Two Distinct Populations of Cholangiocytes. Stem Cell Reports, 2017, 9, 478-489.	4.8	68

#	Article	IF	CITATIONS
109	Tempol Protects against Oxidative Damage and Delays Epithelial Tumor Onset in Fanconi Anemia Mice. Cancer Research, 2008, 68, 1601-1608.	0.9	66
110	AAV integration in human hepatocytes. Molecular Therapy, 2021, 29, 2898-2909.	8.2	64
111	Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight, 2019, 4, .	5.0	64
112	Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology, 2004, 39, 433-443.	7.3	61
113	Liver Injury Increases the Incidence of HCC following AAV Gene Therapy in Mice. Molecular Therapy, 2021, 29, 680-690.	8.2	61
114	Loss of p21 Permits Carcinogenesis from Chronically Damaged Liver and Kidney Epithelial Cells despite Unchecked Apoptosis. Cancer Cell, 2008, 14, 59-67.	16.8	60
115	Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood, 2016, 128, 2774-2784.	1.4	60
116	Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Research, 2014, 13, 144-153.	0.7	59
117	Tumor necrosis factor-? and CD95 ligation suppress erythropoiesis in fanconi anemia C gene knockout mice. , 1999, 179, 79-86.		58
118	Fanconi anemia group A and C double-mutant mice. Experimental Hematology, 2002, 30, 679-688.	0.4	58
119	In Vivo Genetic Selection of Renal Proximal Tubules. Molecular Therapy, 2006, 13, 49-58.	8.2	58
120	AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. Molecular Therapy - Methods and Clinical Development, 2020, 17, 234-245.	4.1	58
121	SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11. Oncogene, 2002, 21, 4873-4878.	5.9	57
122	Retroviral-Mediated Gene Transfer of Human Ornithine Transcarbamylase into Primary Hepatocytes of <i>spf</i> and <i>spf-ash</i> Mice. Human Gene Therapy, 1992, 3, 35-44.	2.7	56
123	Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Science Translational Medicine, 2016, 8, 349ra99.	12.4	56
124	Subtyping Analysis of Fanconi Anemia by Immunoblotting and Retroviral Gene Transfer. Molecular Medicine, 1998, 4, 468-479.	4.4	55
125	Phenotypic correction of Fanconi anemia group C knockout mice. Blood, 2000, 95, 700-704.	1.4	54
126	Mechanistic Inferences from the Crystal Structure of Fumarylacetoacetate Hydrolase with a Bound Phosphorus-based Inhibitor. Journal of Biological Chemistry, 2001, 276, 15284-15291.	3.4	54

#	Article	IF	CITATIONS
127	Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Human Molecular Genetics, 2005, 14, 3027-3033.	2.9	54
128	Low Therapeutic Threshold for Hepatocyte Replacement in Murine Phenylketonuria. Molecular Therapy, 2005, 12, 337-344.	8.2	53
129	New potential cell source for hepatocyte transplantation: Discarded livers from metabolic disease liver transplants. Stem Cell Research, 2013, 11, 563-573.	0.7	53
130	Genome-wide genetic and epigenetic analyses of pancreatic acinar cell carcinomas reveal aberrations in genome stability. Nature Communications, 2017, 8, 1323.	12.8	53
131	Point mutations and polymorphisms in the human dystrophin gene identified in genomic DNA sequences amplified by multiplex PCR. Human Genetics, 1992, 89, 253-8.	3.8	52
132	In Vivo Selection of Wild-Type Hematopoietic Stem Cells in a Murine Model of Fanconi Anemia. Blood, 1999, 94, 2151-2158.	1.4	52
133	Principles of therapeutic liver repopulation. Journal of Inherited Metabolic Disease, 2006, 29, 421-425.	3.6	52
134	Mutations of the fumarylacetoacetate hydrolase gene in four patients with tyrosinemia, type I. Human Mutation, 1993, 2, 85-93.	2.5	51
135	Pancreatic–hepatic switches in vivo. Mechanisms of Development, 2003, 120, 99-106.	1.7	51
136	Tissue Stem Cells: New Tools and Functional Diversity. Cell Stem Cell, 2012, 10, 685-689.	11.1	51
137	Proliferative polyploid cells give rise to tumors via ploidy reduction. Nature Communications, 2021, 12, 646.	12.8	51
138	Identification of the mutation in the alkaptonuria mouse model. Human Mutation, 1999, 13, 171-171.	2.5	50
139	Signaling networks in hepatic oval cell activation. Stem Cell Research, 2008, 1, 90-102.	0.7	49
140	Murine succinate semialdehyde dehydrogenase deficiency. Annals of Neurology, 2003, 54, S81-S90.	5.3	48
141	Helper-independent and AAV-ITR-independent chromosomal integration of double-stranded linear DNA vectors in mice. Molecular Therapy, 2003, 7, 101-111.	8.2	48
142	Cloning and Characterization of a Human cDNA (INPPL1) Sharing Homology with Inositol Polyphosphate Phosphatases. Genomics, 1995, 29, 285-287.	2.9	45
143	Mice with Chimeric Livers Are an Improved Model for Human Lipoprotein Metabolism. PLoS ONE, 2013, 8, e78550.	2.5	45
144	Loss of p27Kip1 enhances the transplantation efficiency of hepatocytes transferred into diseased livers. Journal of Clinical Investigation, 2001, 108, 383-390.	8.2	45

#	Article	IF	CITATIONS
145	Heterozygosity for p53 (Trp53+/-) accelerates epithelial tumor formation in fanconi anemia complementation group D2 (Fancd2) knockout mice. Cancer Research, 2005, 65, 85-91.	0.9	45
146	Liver repopulation for the treatment of metabolic diseases. Journal of Inherited Metabolic Disease, 2001, 24, 231-244.	3.6	44
147	Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers. Molecular and Cellular Endocrinology, 2011, 339, 144-150.	3.2	44
148	Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Research, 2013, 11, 503-515.	0.7	44
149	Gene Structure, Chromosomal Location, and Expression Pattern of Maleylacetoacetate Isomerase. Genomics, 1999, 58, 263-269.	2.9	41
150	The Ashkenazi Jewish Fanconi anemia mutation: Incidence among patients and carrier frequency in the at-risk population. Human Mutation, 1994, 3, 339-341.	2.5	39
151	Generation of Monoclonal Antibodies Specific for Cell Surface Molecules Expressed on Early Mouse Endoderm. Stem Cells, 2009, 27, 2103-2113.	3.2	38
152	Pharmacologic inhibition of Lâ€ŧyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU). Journal of Inherited Metabolic Disease, 2014, 37, 735-743.	3.6	38
153	A universal system to select gene-modified hepatocytes in vivo. Science Translational Medicine, 2016, 8, 342ra79.	12.4	38
154	Function of the Fanconi anemia pathway in Fanconi anemia complementation group F and D1 cells. Experimental Hematology, 2001, 29, 1448-1455.	0.4	37
155	Preclinical Protocol for in Vivo Selection of Hematopoietic Stem Cells Corrected by Gene Therapy in Fanconi Anemia Group C. Molecular Therapy, 2001, 3, 14-23.	8.2	37
156	Activation of nuclear factor E2-related factor 2 in hereditary tyrosinemia type 1 and its role in survival and tumor development. Hepatology, 2008, 48, 487-496.	7.3	36
157	AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Molecular Therapy, 2012, 20, 1902-1911.	8.2	36
158	Adeno-associated virus finds its disease. Nature Genetics, 2015, 47, 1104-1105.	21.4	36
159	CDX2 in the formation of the trophectoderm lineage in primate embryos. Developmental Biology, 2009, 335, 179-187.	2.0	35
160	Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS ONE, 2017, 12, e0181812.	2.5	35
161	Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. American Journal of Human Genetics, 2019, 105, 1237-1253.	6.2	34
162	Liver Repair by Intra- and Extrahepatic Progenitors. Stem Cell Reviews and Reports, 2005, 1, 061-064.	5.6	33

#	Article	IF	CITATIONS
163	Interstrand crosslink-induced radials form between non-homologous chromosomes, but are absent in sex chromosomes. DNA Repair, 2004, 3, 535-542.	2.8	31
164	Sustained Phosphorylation of Bid Is a Marker for Resistance to Fas-Induced Apoptosis During Chronic Liver Diseases. Gastroenterology, 2006, 130, 104-119.	1.3	31
165	MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell Stem Cell, 2021, 28, 33-47.e8.	11.1	31
166	Localization of the Fanconi Anemia Complementation Group D Gene to a 200-kb Region on Chromosome 3p25.3. American Journal of Human Genetics, 2000, 66, 1540-1551.	6.2	30
167	Pharmacologic or genetic ablation of maleylacetoacetate isomerase increases levels of toxic tyrosine catabolites in rodents. Biochemical Pharmacology, 2003, 66, 2029-2038.	4.4	30
168	The Fanconi Family Adds a Fraternal Twin. Developmental Cell, 2007, 12, 661-662.	7.0	30
169	AAV-Mediated Gene Targeting Is Significantly Enhanced by Transient Inhibition of Nonhomologous End Joining or the Proteasome <i>In Vivo</i> . Human Gene Therapy, 2012, 23, 658-665.	2.7	30
170	Adult versus Embryonic Stem Cells: It's Still a Tie. Molecular Therapy, 2002, 6, 303-305.	8.2	29
171	Therapeutic Liver Reconstitution With Murine Cells Isolated Long After Death. Gastroenterology, 2010, 139, 1019-1029.	1.3	29
172	Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression. Molecular Therapy, 2012, 20, 1912-1923.	8.2	27
173	Oxymetholone Therapy of Fanconi Anemia Suppresses Osteopontin Transcription and Induces Hematopoietic Stem Cell Cycling. Stem Cell Reports, 2015, 4, 90-102.	4.8	26
174	Fah Knockout Animals as Models for Therapeutic Liver Repopulation. Advances in Experimental Medicine and Biology, 2017, 959, 215-230.	1.6	26
175	Liver-Directed Adenoviral Gene Transfer in Murine Succinate Semialdehyde Dehydrogenase Deficiency. Molecular Therapy, 2004, 9, 527-539.	8.2	25
176	Long-Term Correction of Diabetes in Mice by InÂVivo Reprogramming of Pancreatic Ducts. Molecular Therapy, 2018, 26, 1327-1342.	8.2	25
177	Bone Marrow-Derived Hepatocytes. Novartis Foundation Symposium, 2008, , 20-34.	1.1	24
178	Insights From Liverâ€Humanized Mice on Cholesterol Lipoprotein Metabolism and LXRâ€Agonist Pharmacodynamics in Humans. Hepatology, 2020, 72, 656-670.	7.3	23
179	The sulfatase gene family: Cross-species PCR cloning using the MOPAC technique. Genomics, 1992, 12, 755-760.	2.9	22
180	The Origin of Hepatocytes. Gastroenterology, 2005, 128, 2158-2160.	1.3	22

11

#	Article	IF	CITATIONS
181	The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice. Stem Cell Research, 2015, 15, 130-140.	0.7	21
182	Silent Tyrosinemia Type I Without Elevated Tyrosine or Succinylacetone Associated with Liver Cirrhosis and Hepatocellular Carcinoma. Human Mutation, 2016, 37, 1097-1105.	2.5	21
183	Functional analysis of patient-derived mutations in the Fanconi anemia gene, FANCG/XRCC9. Experimental Hematology, 2001, 29, 842-849.	0.4	20
184	Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system. Journal of Cell Science, 2012, 125, 2837-43.	2.0	20
185	Dynamic Transcriptional and Epigenetic Changes Drive Cellular Plasticity in the Liver. Hepatology, 2021, 74, 444-457.	7.3	20
186	ERCC1 is required for FANCD2 focus formation. Molecular Genetics and Metabolism, 2008, 95, 66-73.	1.1	18
187	The novel monoclonal antibody HPC2 and N-cadherin distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Human Pathology, 2012, 43, 1583-1589.	2.0	18
188	Efficient inÂvivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Reports, 2020, 2, 100065.	4.9	18
189	DNA Replication Is Required To Elicit Cellular Responses to Psoralen-Induced DNA Interstrand Cross-Links. Molecular and Cellular Biology, 2000, 20, 8283-8289.	2.3	18
190	Fanconi anemiaâ€like presentation in an infant with constitutional deletion of 21q including the <i>RUNX1</i> gene. American Journal of Medical Genetics, Part A, 2011, 155, 1673-1679.	1.2	17
191	Successful Engraftment of Human Hepatocytes in uPA-SCID and FRG® KO Mice. Methods in Molecular Biology, 2017, 1506, 117-130.	0.9	17
192	Delineating the Hepatocyte's Hematopoietic Fusion Partner. Cell Cycle, 2004, 3, 1489-1491.	2.6	16
193	The importance of knowing your identity: Sources of confusion in stem cell biology. Hepatology, 2004, 39, 35-37.	7.3	16
194	Slow-onset inhibition of fumarylacetoacetate hydrolase by phosphinate mimics of the tetrahedral intermediate: kinetics, crystal structure and pharmacokinetics. Biochemical Journal, 2007, 402, 251-260.	3.7	16
195	Chronic Phenotype Characterization of a Large-Animal Model of Hereditary Tyrosinemia Type 1. American Journal of Pathology, 2017, 187, 33-41.	3.8	16
196	Therapeutic liver repopulation by transient acetaminophen selection of gene-modified hepatocytes. Science Translational Medicine, 2021, 13, .	12.4	16
197	In Vivo Selection of Transplanted Hepatocytes by Pharmacological Inhibition of Fumarylacetoacetate Hydrolase in Wild-type Mice. Molecular Therapy, 2012, 20, 1981-1987.	8.2	15
198	Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nature Communications, 2021, 12, 6504.	12.8	15

#	Article	IF	CITATIONS
199	Nucleotide sequence of a cDNA encoding murine fumarylacetoacetate hydrolase. Biochemical Medicine and Metabolic Biology, 1992, 48, 26-31.	0.7	14
200	Molecular detection and correction of ornithine transcarbamylase deficiency. Trends in Genetics, 1990, 6, 335-339.	6.7	13
201	Validation of Fanconi anemia complementation Group A assignment using molecular analysis. Genetics in Medicine, 2009, 11, 183-192.	2.4	13
202	Evaluation of resveratrol and <i>N</i> â€acetylcysteine for cancer chemoprevention in a Fanconi anemia murine model. Pediatric Blood and Cancer, 2014, 61, 740-742.	1.5	13
203	Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Research, 2016, 17, 587-596.	0.7	13
204	CXCR4 induction in hematopoietic progenitor cells from Fancaâ^'/â^', -câ^'/â^', and -d2â^'/â^' mice. Experimental Hematology, 2008, 36, 273-282.	0.4	12
205	Mouse liver goes human: A new tool in experimental hepatology. Hepatology, 2001, 33, 1005-1006.	7.3	11
206	FANCD2: A branch-point in DNA damage response?. Nature Medicine, 2002, 8, 555-556.	30.7	11
207	Assessing the potential of induced liver regeneration. Nature Medicine, 2013, 19, 1096-1097.	30.7	11
208	Fancd2 and p21 function independently in maintaining the size of hematopoietic stem and progenitor cell pool in mice. Stem Cell Research, 2013, 11, 687-692.	0.7	11
209	Induced Liver Regeneration Enhances CRISPR/Cas9-Mediated Gene Repair in Tyrosinemia Type 1. Human Gene Therapy, 2021, 32, 294-301.	2.7	11
210	Rapid nonradioactive assay for the detection of the common French Canadian tyrosinemia type I mutation. Human Mutation, 1995, 5, 105-105.	2.5	10
211	Six novel mutations in the fumarylacetoacetate hydrolase gene of patients with hereditary tyrosinemia type I. Human Mutation, 1996, 7, 367-369.	2.5	10
212	Sandgren EP, Palmiter RD, Heckel JL, Daugherty CC, Brinster RL, Degen JL. Complete hepatic regeneration after somatic deletion of an albumin–plasminogen activator transgene [Cell 1991;66:245–256]. Journal of Hepatology, 2002, 37, 422-424.	3.7	9
213	Embryonic Lethality after Combined Inactivation of <i>Fancd2</i> and <i>Mlh1</i> in Mice. Cancer Research, 2009, 69, 9431-9438.	0.9	9
214	Inactivation of the Fanconi Anemia Group C Gene Augments Interferon-γ–Induced Apoptotic Responses in Hematopoietic Cells. Blood, 1997, 90, 974-985.	1.4	9
215	Inhibition of TGFβ1 and TGFβ3 promotes hematopoiesis in Fanconi anemia. Experimental Hematology, 2021, 93, 70-84.e4.	0.4	8
216	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8

#	Article	IF	CITATIONS
217	Fanconi anemia cells have a normal gene structure for topoisomerase I. Human Genetics, 1994, 93, 583-6.	3.8	7
218	In vivo administration of interferon \hat{I}^3 does not cause marrow aplasia in mice with a targeted disruption of FANCC. Experimental Hematology, 2002, 30, 1257-1262.	0.4	7
219	Embryonic versus adult stem cell pluripotency: in liver only fusion matters. Journal of Assisted Reproduction and Genetics, 2003, 20, 393-394.	2.5	7
220	FANCL, as in ligase. Nature Genetics, 2003, 35, 113-114.	21.4	7
221	Renal proximal tubular cells acquire resistance to cell death stimuli in mice with hereditary tyrosinemia type 1. Kidney International, 2004, 66, 990-1000.	5.2	7
222	Bone marrow-derived hepatocytes. Novartis Foundation Symposium, 2005, 265, 20-7; discussion 28-34, 92-7.	1.1	7
223	Transition of Stem Cells to Therapeutically Functional Tissueâ€6pecific Cells. Annals of the New York Academy of Sciences, 2002, 961, 305-306.	3.8	6
224	Novel surface markers directed against adult human gallbladder. Stem Cell Research, 2015, 15, 172-181.	0.7	6
225	Combination therapy with atorvastatin and celecoxib delays tumor formation in a Fanconi anemia mouse model. Pediatric Blood and Cancer, 2019, 66, e27460.	1.5	6
226	Gene Therapy and Pediatric Liver Disease. Journal of Pediatric Gastroenterology and Nutrition, 2002, 35, S51-S54.	1.8	5
227	Embryonic stem cells without embryos?. Nature Biotechnology, 2005, 23, 1496-1497.	17.5	5
228	Response to "Can â€~humanized' mice improve drug development in the 21st century?― Trends in Pharmacological Sciences, 2013, 34, 425.	8.7	5
229	A Therapy for Liver Failure Found in the JNK Yard. Cell, 2013, 153, 283-284.	28.9	5
230	In vitro expansion of cirrhosis derived liver epithelial cells with defined small molecules. Stem Cell Research, 2021, 56, 102523.	0.7	5
231	Human pancreatic cancer fusion 2 (HPC2) 1â€B3: A novel monoclonal antibody to screen for pancreatic ductal dysplasia. Cancer Cytopathology, 2013, 121, 37-46.	2.4	3
232	Embryonic stem cells can be used to construct hybrid cell lines containing a single, selectable murine chromosome. Mammalian Genome, 1999, 10, 381-384.	2.2	2
233	Development of a Beta Cell-Specific Expression Control Element for Recombinant Adeno-Associated Virus. Human Gene Therapy, 2022, 33, 789-800.	2.7	2
234	Adult Liver Stem Cells. , 2009, , 285-298.		1

234 Adult Liver Stem Cells. , 2009, , 285-298.

#	Article	IF	CITATIONS
235	Adult Liver Stem Cells. , 2014, , 309-327.		1
236	DNA Cross-Linker–Induced G2/M Arrest in Group C Fanconi Anemia Lymphoblasts Reflects Normal Checkpoint Function. Blood, 1998, 91, 275-287.	1.4	1
237	Metformin for Treatment of Cytopenias in Children and Young Adults with Fanconi Anemia. Blood, 2021, 138, 1102-1102.	1.4	1
238	[1]Chemical mismatch cleavage. Methods in Molecular Genetics, 1996, , 3-13.	0.6	0
239	Chemical Cleavage of Heteroduplex DNA to Identify Mutations. Current Protocols in Human Genetics, 1998, 17, Unit 7.6.	3.5	0
240	Reply to "Involvement of oxidative stress in Fanconi's anaemia: from phenotype to FA protein functions― Nature Reviews Cancer, 2003, 3, 78-78.	28.4	0
241	Adult Liver Stem Cells. , 2004, , 483-495.		0
242	Adult Liver Stem Cells. , 2013, , 873-887.		0
243	Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. Journal of Cell Biology, 2011, 194, i11-i11.	5.2	0
244	Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system. Development (Cambridge), 2012, 139, e1707-e1707.	2.5	0
245	Replication Stress Response and CDKN1A Engagement Constrain Fetal Hematopoietic Stem Cell Pool Size in Fanconi Anemia, Blood, 2019, 134, 107-107	1.4	0