Shuichi Makita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561002/publications.pdf Version: 2024-02-01

SHUICHI ΜΑΚΙΤΑ

#	Article	IF	CITATIONS
1	Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography. Biomedical Optics Express, 2022, 13, 168.	2.9	6
2	Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2022, 27, .	2.6	9
3	Three dimensional tumor spheroid drug response evaluation using OCT based tissue viability evaluation method. , 2022, , .		0
4	Objective evaluation of choroidal melanin loss in patients with Vogt–Koyanagi–Harada disease using polarization-sensitive optical coherence tomography. Scientific Reports, 2022, 12, 3526.	3.3	4
5	Multi-focus average for multiple scattering noise suppression in optical coherence tomography. , 2022, , .		1
6	Non-destructive characterization of adult zebrafish models using Jones matrix optical coherence tomography. Biomedical Optics Express, 2022, 13, 2202.	2.9	10
7	Label-free assessment of renal function with unilateral ureteral obstruction (UUO) model by optical coherence microscopy. , 2022, , .		Ο
8	Motion-immune digital refocusing of point-scanning optical coherence tomography with Lissajous scan. , 2022, , .		0
9	Sparse frame acquisition toward fast volumetric dynamic optical coherence tomography imaging. , 2022, , .		1
10	Rapid, non-destructive, and volumetric characterization of zebrafish tumor models using Jones-matrix optical coherence tomography. , 2022, , .		0
11	Evaluation of choroidal melanin-containing tissue in healthy Japanese subjects by polarization-sensitive optical coherence tomography. Scientific Reports, 2022, 12, 4048.	3.3	5
12	Computational refocusing of Jones matrix polarization-sensitive optical coherence tomography and investigation of defocus-induced polarization artifacts. Biomedical Optics Express, 2022, 13, 2975.	2.9	10
13	Label-free metabolic imaging of non-alcoholic-fatty-liver-disease (NAFLD) liver by volumetric dynamic optical coherence tomography. Biomedical Optics Express, 2022, 13, 4071.	2.9	9
14	In vivo investigation of a tumor xenograft zebrafish model using multicontrast polarization-sensitive optical coherence tomography. , 2022, , .		0
15	Multi-focus average for multiple noise suppression in optical coherence tomography. , 2022, , .		0
16	Dynamics Imaging of Plant Maturity by Optical Coherence Tomography. , 2022, , .		0
17	Depthâ€resolved investigation of multiple optical properties and wrinkle morphology in eye orner areas with multiâ€contrast Jones matrix optical coherence tomography. Skin Research and Technology, 2021, 27, 435-443.	1.6	6
18	Evaluation of retinal pigment epithelium changes in serous pigment epithelial detachment in age-related macular degeneration. Scientific Reports, 2021, 11, 2764.	3.3	5

#	Article	IF	CITATIONS
19	Multi-contrast imaging with computational refocusing in polarization-sensitive optical coherence tomography. , 2021, , .		2
20	Three-dimensional imaging of mouse liver dynamics by polarization-sensitive optical coherence tomography. , 2021, , .		1
21	Computational multi-directional optical coherence tomography for visualizing the microstructural directionality of the tissue. Biomedical Optics Express, 2021, 12, 3851.	2.9	4
22	Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation. Biomedical Optics Express, 2021, 12, 6844.	2.9	28
23	Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography. Scientific Reports, 2021, 11, 20054.	3.3	11
24	Accurately motion-corrected Lissajous OCT with multi-type image registration. Biomedical Optics Express, 2021, 12, 637.	2.9	9
25	Multi-functional optical coherence microscopy for in-vitro and ex-vivo tissue investigation. , 2021, , .		0
26	Virtual multi-directional optical coherence tomography. , 2020, , .		2
27	Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography. Biomedical Optics Express, 2020, 11, 5886.	2.9	11
28	Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids. Biomedical Optics Express, 2020, 11, 6231.	2.9	43
29	Motion-free optical coherence tomography imaging of retinal disease using Lissajous scanning pattern. , 2020, , .		1
30	Bulk phase error correction for holographic signal processing of optical coherence tomography. , 2020, , .		0
31	Quantification of ex-vivo tissue activity by polarization dynamics imaging using Jones matrix optical coherence tomography. , 2020, , .		1
32	Retinal pigment epithelium-melanin specific contrast imaging by multi-contrast OCT. , 2020, , .		0
33	Tissue analysis using optical and mechanical tissue properties obtained by polarization-sensitive optical coherence elastography. , 2020, , .		0
34	Depth-resolved investigation of multiple optical properties and wrinkle morphology in eye-corner area by multi-functional Jones matrix optical coherence tomography. , 2020, , .		0
35	Quantification of ex vivo tissue activity by short and long time-course analysis of multifunctional OCT signals. , 2020, , .		2
36	Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. Biomedical Optics Express, 2020, 11, 6945.	2.9	9

#	Article	IF	CITATIONS
37	Multi-scale and -contrast sensorless adaptive optics optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2019, 9, 757-768.	2.0	2
38	Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography. , 2019, 60, 3352.		15
39	Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment. Scientific Reports, 2019, 9, 3278.	3.3	15
40	Polarization-sensitive optical coherence elastography. Biomedical Optics Express, 2019, 10, 5162.	2.9	18
41	Clinical multi-functional OCT for retinal imaging. Biomedical Optics Express, 2019, 10, 5724.	2.9	9
42	Compression optical coherence elastography with two-dimensional displacement measurement and local deformation visualization. Optics Letters, 2019, 44, 787.	3.3	20
43	Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation. Biomedical Optics Express, 2018, 9, 4372.	2.9	23
44	Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning. Biomedical Optics Express, 2018, 9, 1111.	2.9	28
45	Machine-learning based segmentation of the optic nerve head using multi-contrast Jones matrix optical coherence tomography with semi-automatic training dataset generation. Biomedical Optics Express, 2018, 9, 3220.	2.9	10
46	Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography. Biomedical Optics Express, 2018, 9, 2955.	2.9	23
47	Objective evaluation of choroidal melanin contents with polarization-sensitive optical coherence tomography. , 2018, , .		Ο
48	Birefringence and vascular imaging of <i>in vivo</i> human skin by Jones-matrix optical coherence tomography. Proceedings of SPIE, 2017, , .	0.8	0
49	Motion-corrected en face optical coherence tomography angiography imaging based on the modified Lissajous scanning patter. Proceedings of SPIE, 2017, , .	0.8	0
50	High contrast and polarization-artifact-free optical coherence tomography by maximum a-posteriori estimation. Proceedings of SPIE, 2017, , .	0.8	0
51	Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging. Scientific Reports, 2017, 7, 3150.	3.3	59
52	Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2017, 8, 653.	2.9	26
53	Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. Biomedical Optics Express, 2017, 8, 1290.	2.9	73
54	Detection of local tissue alteration during retinal laser photocoagulation of ex vivo porcine eyes using phase-resolved optical coherence tomography. Biomedical Optics Express, 2017, 8, 3067.	2.9	6

#	Article	IF	CITATIONS
55	Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography. Biomedical Optics Express, 2017, 8, 4396.	2.9	5
56	Three-dimensional eye motion correction by Lissajous scan optical coherence tomography. Biomedical Optics Express, 2017, 8, 1783.	2.9	39
57	Noise-bias and polarization-artifact corrected optical coherence tomography by maximum a-posteriori intensity estimation. Biomedical Optics Express, 2017, 8, 2069.	2.9	11
58	Polarization-Sensitive Optical Coherence Tomographic Documentation of Choroidal Melanin Loss in Chronic Vogt–Koyanagi–Harada Disease. , 2017, 58, 4467.		23
59	Investigation of multiple optical and biometric properties of optic nerve head (Conference) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 5
60	Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation). , 2016, , .		0
61	Full-range ultrahigh-resolution spectral-domain optical coherence tomography in 1.7 µm wavelength region for deep-penetration and high-resolution imaging of turbid tissues. Applied Physics Express, 2016, 9, 127002.	2.4	11
62	Maximum a posteriori estimator for high-contrast image composition of optical coherence tomography. Optics Letters, 2016, 41, 321.	3.3	15
63	Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography. Biomedical Optics Express, 2016, 7, 1525.	2.9	63
64	Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction. , 2016, , .		3
65	Noise-immune complex correlation for vasculature imaging based on standard and Jones-matrix optical coherence tomography. Proceedings of SPIE, 2016, , .	0.8	0
66	Quantitative optical coherence tomography by maximum a-posteriori estimation of signal intensity. Proceedings of SPIE, 2016, , .	0.8	0
67	Three-dimensional multifunctional optical coherence tomography for skin imaging. , 2016, , .		0
68	Eye motion corrected OCT imaging with Lissajous scan pattern. , 2016, , .		1
69	Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography. PLoS ONE, 2016, 11, e0156761.	2.5	12
70	Ultrahigh-resolution spectral domain optical coherence tomography in 1.7 um wavelength region. , 2016, , .		0
71	Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography. Biomedical Optics Express, 2015, 6, 4951.	2.9	56
72	Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography. Biomedical Optics Express, 2015, 6, 170.	2.9	36

#	Article	IF	CITATIONS
73	Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction. Biomedical Optics Express, 2015, 6, 225.	2.9	18
74	In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents. Biomedical Optics Express, 2015, 6, 1707.	2.9	16
75	In-plane and out-of-plane tissue micro-displacement measurement by correlation coefficients of optical coherence tomography. Optics Letters, 2015, 40, 2153.	3.3	29
76	Jones Matrix Based Polarization Sensitive Optical Coherence Tomography. , 2015, , 1137-1162.		10
77	Dual Beam Doppler Optical Coherence Angiography. , 2015, , 1353-1371.		0
78	Simultaneous Investigation of Vascular and Retinal Pigment Epithelial Pathologies of Exudative Macular Diseases by Multifunctional Optical Coherence Tomography. , 2014, 55, 5016.		42
79	Toward absorption contrast imaging of biological tissues in vivo by using photothermal optical coherence tomography. Proceedings of SPIE, 2014, , .	0.8	Ο
80	Quantitative two-dimensional micro-displacement measurement by optical coherence tomography. , 2014, , .		0
81	Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography. Optics Express, 2014, 22, 4830.	3.4	30
82	Bayesian maximum likelihood estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography. Optics Express, 2014, 22, 16472.	3.4	38
83	Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography. Optics Letters, 2014, 39, 6783.	3.3	91
84	In vivo three-dimensional investigation of tissue birefringence by Jones matrix tomography. , 2013, , .		3
85	Thickness mapping of the inner retina by spectral-domain optical coherence tomography in an N-methyl-d-aspartate-induced retinal damage model. Experimental Eye Research, 2013, 113, 19-25.	2.6	9
86	Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging. Optics Express, 2013, 21, 19412.	3.4	108
87	Noninvasive Investigation of Deep Vascular Pathologies of Exudative Macular Diseases by High-Penetration Optical Coherence Angiography. , 2013, 54, 3621.		36
88	Extended depth of focus adaptive optics spectral domain optical coherence tomography. Biomedical Optics Express, 2012, 3, 2353.	2.9	40
89	Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging. Optics Express, 2012, 20, 2681.	3.4	17
90	High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization. Optics Express, 2012, 20, 2740.	3.4	66

SHUICHI МАКІТА

#	Article	IF	CITATIONS
91	Variable velocity range imaging of the choroid with dual-beam optical coherence angiography. Optics Express, 2012, 20, 385.	3.4	42
92	Choroidal imaging by one-micrometer dual-beam Doppler optical coherence angiography with adjustable velocity range. Proceedings of SPIE, 2012, , .	0.8	0
93	Office based multi-functional anterior eye segment optical coherence tomography. , 2012, , .		Ο
94	Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics. Optics Express, 2012, 20, 22796.	3.4	77
95	Optical Rheology of Porcine Sclera by Birefringence Imaging. PLoS ONE, 2012, 7, e44026.	2.5	27
96	An Approach to Measure Blood Flow in Single Choroidal Vessel Using Doppler Optical Coherence Tomography. , 2012, 53, 7137.		12
97	Extended depth of focus adaptive optics spectral domain optical coherence tomography. , 2012, , .		0
98	High-Penetration Optical Coherence Tomography With Enhanced Depth Imaging of Polypoidal Choroidal Vasculopathy. Ophthalmic Surgery Lasers and Imaging Retina, 2012, 43, e5-9.	0.7	6
99	Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator. Journal of the Optical Society of Korea, 2011, 15, 111-117.	0.6	3
100	Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography. Biomedical Optics Express, 2011, 2, 1147.	2.9	26
101	Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. Optics Express, 2011, 19, 1271.	3.4	138
102	Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography. Optics Express, 2011, 19, 16330.	3.4	31
103	In vivo analysis of human skin anisotropy by polarization-sensitive optical coherence tomography. Proceedings of SPIE, 2011, , .	0.8	0
104	Fast retinal layer identification for optical coherence tomography images. Proceedings of SPIE, 2011, , .	0.8	1
105	Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1485-1492.	1.9	125
106	Wide field of view retinal imaging using one-micrometer adaptive optics scanning laser ophthalmoscope. Proceedings of SPIE, 2011, , .	0.8	0
107	Non-invasive three-dimensional angiography of human eye by Doppler optical coherence tomography. , 2011, , .		0
108	Three-Dimensional Visualization of Ocular Vascular Pathology by Optical Coherence Angiography In Vivo. , 2011, 52, 2689.		57

#	Article	IF	CITATIONS
109	Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography. , 2010, , .		2
110	Adaptive optics spectral domain optical coherence tomography with one-micrometer light source. , 2010, , .		0
111	BM-mode scanning with parabolic phase modulation for full range Doppler optical tomography. Proceedings of SPIE, 2010, , .	0.8	Ο
112	Full range polarization-sensitive swept-source optical coherence tomography at 1 μm with polarization modulation and BM-mode scant. Proceedings of SPIE, 2010, , .	0.8	0
113	Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2010, 15, 061705.	2.6	46
114	High-sensitive blood flow imaging of the retina and choroid by using double-beam optical coherence angiography. , 2010, , .		4
115	Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography. Optics Express, 2010, 18, 8515.	3.4	32
116	Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation. Optics Express, 2010, 18, 13964.	3.4	58
117	Wettability characterization method based on optical coherence tomography imaging. Optics Express, 2010, 18, 22859.	3.4	13
118	Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Optics Express, 2010, 18, 854.	3.4	143
119	Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography. Optics Express, 2010, 18, 1358.	3.4	22
120	Adaptive optics retinal scanner for one-micrometer light source. Optics Express, 2010, 18, 1406.	3.4	12
121	High-speed and high-sensitive optical coherence angiography. , 2009, , .		7
122	Automated retinal shadow compensation of optical coherence tomography images. Journal of Biomedical Optics, 2009, 14, 010503.	2.6	18
123	Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography. , 2009, 50, 405.		97
124	Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-µm probe. Optics Express, 2009, 17, 12385.	3.4	81
125	Automated segmentation of the macula by optical coherence tomography. Optics Express, 2009, 17, 15659.	3.4	100
126	Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography. Optics Express, 2009, 17, 17426.	3.4	46

#	Article	IF	CITATIONS
127	Investigation of anterior chamber angle by swept-source polarization sensitive optical coherence tomography. , 2009, , .		Ο
128	In vivo depth-resolved tissue contrast by local birefringence and differential optic axis orientation using polarization-sensitive swept-source optical coherence tomography. Proceedings of SPIE, 2009, , .	0.8	1
129	Polarization-sensitive swept-source optical coherence tomography at 1Ã,µm for birefringence imaging of the posterior segment of the eye. , 2009, , .		Ο
130	Automated retinal pigment epithelium identification from optical coherence tomography images. Proceedings of SPIE, 2009, , .	0.8	0
131	Simultaneous birefringence and Doppler flow imaging of the anterior eye segment using multi-functional swept-source optical coherence tomography. , 2009, , .		Ο
132	Blood flow imaging at deep posterior human eye using 1 $\hat{l}{}^1\!\!/ 4$ m spectral-domain optical coherence tomography. , 2009, , .		4
133	$1 { m \hat{l}}$ /4m wavelength adaptive optics scanning laser ophthalmoscope. Proceedings of SPIE, 2009, , .	0.8	Ο
134	Comparison of Spectral Domain Optical Coherence Tomography and Color Photographic Imaging of the Optic Nerve Head in Management of Glaucoma. Ophthalmic Surgery Lasers and Imaging Retina, 2009, 40, 255-263.	0.7	11
135	Tissue Contrast Imaging by Polarization Sensitive Optical Coherence Tomography. , 2009, , .		Ο
136	Optical coherence angiography for the eye. SPIE Newsroom, 2009, , .	0.1	0
137	Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. Optics Letters, 2008, 33, 836.	3.3	116
138	Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Optics Express, 2008, 16, 5892.	3.4	178
139	Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Optics Express, 2008, 16, 8406.	3.4	136
140	Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. Journal of Biomedical Optics, 2008, 13, 014013.	2.6	96
141	Retinal blood flow measurement by using optical coherence tomography. Proceedings of SPIE, 2008, , .	0.8	Ο
142	Polarization-sensitive swept-source optical coherence tomography with continuous polarization modulation. , 2008, , .		0
143	Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy. Journal of Glaucoma, 2008, 17, 193-196.	1.6	62
144	Numerical method for compensating the retinal shadows of optical coherence tomography images. , 2008, , .		0

#	Article	IF	CITATIONS
145	Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography with BM-scan method for the human posterior eye imaging. , 2008, , .		0
146	Full range 1-μm spectral domain optical coherence tomography by using electro-optical phase modulator. , 2008, , .		1
147	Imaging Polarimetry in Age-Related Macular Degeneration. , 2008, 49, 2661.		104
148	Prepapillary retinal vessel quantification by using Doppler optical coherence angiography. , 2007, , .		0
149	Phase retardation measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography and scanning laser polarimetry. , 2007, , .		0
150	Optimization of line-field spectral domain optical coherence tomography for in vivo high-speed 3D retinal imaging. , 2007, , .		0
151	Optical coherence angiography for the retina and choroid. , 2007, , .		0
152	Phase-insensitive optical coherence angiography. , 2007, , .		1
153	Scattering optical coherence angiography with 1-μm swept source optical coherence tomography. , 2007, , .		0
154	Birefringence measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography with Jones matrix based analysis. , 2007, , .		3
155	Phase-insensitive optical coherence angiography of the choroid by 1-micrometer band swept-source optical coherence tomography. , 2007, , .		0
156	Optical coherence angiography for the human eye. , 2007, , .		0
157	Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography. Ophthalmology, 2007, 114, 763-773.	5.2	168
158	Three-dimensional Imaging of the Foveal Photoreceptor Layer in Central Serous Chorioretinopathy Using High-speed Optical Coherence Tomography. Ophthalmology, 2007, 114, 2197-2207.e1.	5.2	133
159	In vivo high-contrast imaging of deep posterior eye by 1-î¼m swept source optical coherence tomography and scattering optical coherence angiography. Optics Express, 2007, 15, 6121.	3.4	360
160	High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. Optics Express, 2007, 15, 7103.	3.4	86
161	Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Optics Express, 2007, 15, 7538.	3.4	61
162	Quantitative comparison of phase retardation measured, by polarization-sensitive spectral-domain optical, coherence tomography and scanning laser tomography. , 2007, , .		0

SHUICHI МАКІТА

#	Article	IF	CITATIONS
163	Phase retardation measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography and scanning laser polarimetry. , 2007, , .		1
164	Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography. Optics Express, 2006, 14, 1006.	3.4	96
165	Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Optics Express, 2006, 14, 1862.	3.4	89
166	Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Optics Express, 2006, 14, 6502.	3.4	131
167	Optical coherence angiography. Optics Express, 2006, 14, 7821.	3.4	660
168	Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography. Applied Optics, 2006, 45, 1142.	2.1	30
169	Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Applied Optics, 2006, 45, 1861.	2.1	116
170	Three-dimensional measurement by high-speed line-field Fourier-domain optical coherence tomography in vivo. , 2006, 6079, 167.		0
171	Enhancement of lateral resolution of Fourier domain optical coherence tomography over diffraction-limit by defocus-detection and numerical compensation. , 2006, , .		Ο
172	Clinical application of high-contrast three-dimensional imaging of the retina, choroid, and optic nerve with three-dimensional Fourier domain optical coherence tomography. , 2006, , .		2
173	Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography. , 2006, 6079, 115.		7
174	Three-dimensional investigation of in vivo anterior eye segments by swept-source optical coherence tomography with ready-for-shipping scanning light source. , 2006, 6079, 148.		0
175	Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation. Journal of Biomedical Optics, 2006, 11, 014014.	2.6	33
176	High-speed full-range Fourier domain optical coherence tomography by simultaneous B-M-mode scanning. , 2005, , .		0
177	Laterally oranges super-resolving optical coherence tomography by intentional defocus and numerical compensation. , 2005, , .		0
178	High-speed and line-feed Fourier domain optical coherence tomography (Invited Paper). , 2005, , .		0
179	One-shot-phase-shifting full-range Fourier domain optical coherence tomography by reference wavefront tilting. , 2005, 5690, 127.		0
180	Line-field Fourier-domain optical coherence tomography. , 2005, , .		3

#	Article	IF	CITATIONS
181	Jones Matrix Imaging of Biological Samples Using Parallel-Detecting Polarization-Sensitive Fourier Domain Optical Coherence Tomography. Optical Review, 2005, 12, 146-148.	2.0	14
182	Real Time and Full-range Complex Fourier Domain Optical Coherence Tomography. Optical and Quantum Electronics, 2005, 37, 1157-1163.	3.3	1
183	In-focus Fourier-domain Optical Coherence Tomography by Complex Numerical Method. Optical and Quantum Electronics, 2005, 37, 1185-1189.	3.3	8
184	Laterally Super-Resolving Optical Coherence Tomography by Intentional Defocus and Numerical Compensation. , 2005, , MC2.		0
185	Standard and Line-Field Fourier Domain Optical Coherence Tomography. , 2005, 2005, 7224-6.		1
186	Profilometry with line-field Fourier-domain interferometry. Optics Express, 2005, 13, 695.	3.4	74
187	Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Optics Express, 2005, 13, 10652.	3.4	394
188	Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples. Applied Physics Letters, 2004, 85, 3023-3025.	3.3	74
189	Wavefront-flatness evaluation by wavefront-correlation-information-entropy method and its application for adaptive confocal microscope. Optics Communications, 2004, 232, 91-97.	2.1	22
190	One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting. Optics Express, 2004, 12, 6184.	3.4	57
191	Parallel detection polarization-sensitive spectrally interferometric polarization-sensitive OCT. , 2004,		0
192	Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography for Human Skin Imaging. Optical Review, 2003, 10, 366-369.	2.0	3
193	Polarization Sensitive Spectral Interferometric Optical Coherence Tomography for Biological Samples. Optical Review, 2003, 10, 498-500.	2.0	8
194	Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching. Optics Express, 2003, 11, 54.	3.4	13