Natalya V Anufrieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559799/publications.pdf

Version: 2024-02-01

840776 996975 24 246 11 15 citations g-index h-index papers 24 24 24 157 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetic and spectral parameters of interaction of Citrobacter freundii methionine \hat{I}^3 -lyase with amino acids. Biochemistry (Moscow), 2010, 75, 1272-1280.	1.5	31
2	Engineered Citrobacter freundii methionine \hat{l}^3 -lyase effectively produces antimicrobial thiosulfinates. Biochimie, 2016, 128-129, 92-98.	2.6	23
3	Crystal structure of the external aldimine of Citrobacter freundii methionine Î ³ -lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α- and β-protons of competitive inhibitors. Biochimie, 2014, 101, 161-167.	2.6	19
4	Pre-steady-state Kinetic and Structural Analysis of Interaction of Methionine Î ³ -Lyase from Citrobacter freundii with Inhibitors. Journal of Biological Chemistry, 2015, 290, 671-681.	3.4	19
5	Alliin is a suicide substrate of <i>Citrobacter freundii < li>methionine \hat{l}^3-lyase: structural bases of inactivation of the enzyme. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3034-3042.</i>	2.5	16
6	Identification of methionine \hat{I}^3 -lyase in genomes of some pathogenic bacteria. Doklady Biochemistry and Biophysics, 2012, 445, 187-193.	0.9	15
7	Non-stereoselective decomposition of $(\hat{A}\pm)$ -S-alk(en)yl- l-cysteine sulfoxides to antibacterial thiosulfinates catalyzed by C115H mutant methionine \hat{I}^3 -lyase from Citrobacter freundii. Biochimie, 2018, 151, 42-44.	2.6	14
8	The role of active site tyrosine 58 in Citrobacter freundii methionine \hat{I}^3 -lyase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1220-1228.	2.3	13
9	Plasma methionine depletion and pharmacokinetic properties in mice of methionine \hat{I}^3 -lyase from Citrobacter freundii , Clostridium tetani and Clostridium sporogenes. Biomedicine and Pharmacotherapy, 2017, 88, 978-984.	5.6	13
10	Gene cloning, characterization, and cytotoxic activity of methionine γâ€lyase from <i>Clostridium novyi</i> . IUBMB Life, 2017, 69, 668-676.	3.4	12
11	Mutant form <scp>C</scp> 115 <scp>H</scp> of <scp><i>C</i></scp> <i>lostridium sporogenes</i> methionine γâ€lyase efficiently cleaves <scp>S</scp> â€Alk(en)ylâ€ <scp>I</scp> â€cysteine sulfoxides to antibacterial thiosulfinates. IUBMB Life, 2016, 68, 830-835.	3.4	11
12	Methionine \hat{l}^3 -lyase in enzyme prodrug therapy: An improvement of pharmacokinetic parameters of the enzyme. International Journal of Biological Macromolecules, 2019, 140, 1277-1283.	7. 5	10
13	Structure of methionine \hat{I}^3 -lyase from < i>Clostridium sporogenes < /i>. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 65-71.	0.8	9
14	Identification ofOâ€acetylhomoserine sulfhydrylase, a putative enzyme responsible for methionine biosynthesis inClostridioides difficile: Gene cloning and biochemical characterizations. IUBMB Life, 2019, 71, 1815-1823.	3.4	8
15	Encapsulated Methionine Î ³ -Lyase: Application in Enzyme Prodrug Therapy of <i>Pseudomonas aeruginosa</i> Infection. ACS Omega, 2020, 5, 7782-7786.	3.5	6
16	Serine 51 residue of Citrobacter freundii tyrosine phenol-lyase assists in C- $\hat{1}$ ±-proton abstraction and transfer in the reaction with substrate. Biochimie, 2018, 147, 63-69.	2.6	5
17	NMR screening of potential inhibitors of methionine \hat{I}^3 -lyase from Citrobacter freundii. Molecular Biology, 2014, 48, 896-905.	1.3	4
18	Crystal structure of mutant form Cys115His of Citrobacter freundii methionine \hat{I}^3 -lyase complexed with I-norleucine. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1123-1128.	2.3	4

#	Article	IF	CITATION
19	O-acetylhomoserine sulfhydrylase from Clostridium novyi. Cloning, expression of the gene and characterization of the enzyme. Protein Expression and Purification, 2021, 180, 105810.	1.3	4
20	Kinetic and pharmacokinetic characteristics of therapeutic methinonin θ_{μ} \hat{l}^3 -lyase encapsulated in polyion complex vesicles. Biochimie, 2022, 194, 13-18.	2.6	4
21	Characteristics and Stability Assessment of Therapeutic Methionine Î ³ -lyase-Loaded Polyionic Vesicles. ACS Omega, 2022, 7, 959-967.	3.5	4
22	Sulfoxides of sulfur-containing amino acids are suicide substrates of Citrobacter freundii methionine \hat{I}^3 -lyase. Structural bases of the enzyme inactivation. Biochimie, 2020, 168, 190-197.	2.6	1
23	Analyses of pre-steady-state kinetics and isotope effects of the \hat{I}^3 -elimination reaction catalyzed by Citrobacter freundii methionine \hat{I}^3 -lyase. Biochimie, 2022, 201, 157-167.	2.6	1
24	USE OF PYRIDOXINE TO INCREASE ANTICACNER ACTIVITY OF METHIONINE-GAMMA-LYASE IN MURINE CANCER MODELS. Siberian Journal of Oncology, 2017, 16, 27-35.	0.3	0