Kaustuv Sanyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of <i>FKS1</i> Genotype on Echinocandin <i>In Vitro</i> Susceptibility in Candida auris and <i>In Vivo</i> Response in a Murine Model of Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0165221.	3.2	29
2	Minichromosome maintenance proteins in eukaryotic chromosome segregation. BioEssays, 2022, 44, e2100218.	2.5	5
3	ClalD: a Rapid Method of Clade-Level Identification of the Multidrug Resistant Human Fungal Pathogen Candida auris. Microbiology Spectrum, 2022, 10, e0063422.	3.0	7
4	Loss of nucleosome assembly protein 1 affects growth and appressorium structure in blast fungus MicroPublication Biology, 2022, 2022, .	0.1	1
5	Hypersaline fungi as a source of potentially active metabolites against pathogenic <i>Candida</i> species Czech Mycology, 2022, 74, 93-101.	0.5	1
6	Bridgin connects the outer kinetochore to centromeric chromatin. Nature Communications, 2021, 12, 146.	12.8	17
7	Functional and Comparative Analysis of Centromeres Reveals Clade-Specific Genome Rearrangements in <i>Candida auris</i> and a Chromosome Number Change in Related Species. MBio, 2021, 12, .	4.1	11
8	Vacuolar transporter Mnr2 safeguards organellar integrity in aged cells. Molecular Microbiology, 2021, 116, 861-876.	2.5	0
9	Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassembly. Molecular Microbiology, 2021, 116, 1079-1098.	2.5	3
10	Mechanics of microtubule organizing center clustering and spindle positioning in budding yeast <i>Cryptococcus neoformans</i> . Physical Review E, 2021, 104, 034402.	2.1	8
11	Orc4 spatiotemporally stabilizes centromeric chromatin. Genome Research, 2021, 31, 607-621.	5.5	5
12	Identification and analysis of the origin recognition complex in the human fungal pathogen. MicroPublication Biology, 2021, 2021, .	0.1	0
13	Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annual Review of Microbiology, 2020, 74, 835-853.	7.3	22
14	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	3.5	29
15	Loss of centromere function drives karyotype evolution in closely related Malassezia species. ELife, 2020, 9, .	6.0	45
16	Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. ELife, 2020, 9, .	6.0	31
17	Two negative regulators of biofilm development exhibit functional divergence in conferring virulence potential toCandida albicans. FEMS Yeast Research, 2019, 19, .	2.3	5
18	The Candida albicans biofilm gene circuit modulated at the chromatin level by a recent molecular histone innovation. PLoS Biology, 2019, 17, e3000422.	5.6	22

KAUSTUV SANYAL

#	Article	IF	CITATIONS
19	Cellular Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus. MBio, 2019, 10, .	4.1	18
20	Sth1, the Key Subunit of the RSC Chromatin Remodeling Complex, Is Essential in Maintaining Chromosomal Integrity and Mediating High Fidelity Chromosome Segregation in the Human Fungal Pathogen Candida albicans. Frontiers in Microbiology, 2019, 10, 1303.	3.5	7
21	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	3.9	77
22	Nuclear migration in budding yeasts: position before division. Current Genetics, 2019, 65, 1341-1346.	1.7	11
23	Magnetic hyperthermia adjunctive therapy for fungi: <i>in vitro</i> studies against <i>Candida albicans</i> . International Journal of Hyperthermia, 2019, 36, 544-552.	2.5	5
24	Cis- and Trans-chromosomal Interactions Define Pericentric Boundaries in the Absence of Conventional Heterochromatin. Genetics, 2019, 212, 1121-1132.	2.9	13
25	Aurora kinase lpl1 facilitates bilobed distribution of clustered kinetochores to ensure errorâ€free chromosome segregation in <i>Candida albicans</i> . Molecular Microbiology, 2019, 112, 569-587.	2.5	7
26	Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genetics, 2019, 15, e1007959.	3.5	19
27	Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends in Genetics, 2019, 35, 292-307.	6.7	35
28	Dual-Function Polymer–Silver Nanocomposites for Rapid Killing of Microbes and Inhibiting Biofilms. ACS Biomaterials Science and Engineering, 2019, 5, 81-91.	5.2	26
29	RNAi is a critical determinant of centromere evolution in closely related fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3108-3113.	7.1	112
30	Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal Biology Reviews, 2018, 32, 10-19.	4.7	19
31	Sad1 Spatiotemporally Regulates Kinetochore Clustering To Ensure High-Fidelity Chromosome Segregation in the Human Fungal Pathogen <i>Cryptococcus neoformans</i> . MSphere, 2018, 3, .	2.9	14
32	Five pillars of centromeric chromatin in fungal pathogens. PLoS Pathogens, 2018, 14, e1007150.	4.7	18
33	Chromosome Components Important for Genome Stability in Candida albicans and Related Species. , 2017, , 233-251.		0
34	Aryl-alkyl-lysines: Membrane-Active Fungicides That Act against Biofilms of <i>Candida albicans</i> . ACS Infectious Diseases, 2017, 3, 293-301.	3.8	25
35	Fluconazole-Induced Ploidy Change in Cryptococcus neoformans Results from the Uncoupling of Cell Growth and Nuclear Division. MSphere, 2017, 2, .	2.9	35
36	Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly ofMalassezia sympodialis. Nucleic Acids Research, 2017, 45, gkx006.	14.5	47

KAUSTUV SANYAL

#	Article	IF	CITATIONS
37	Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biology, 2017, 15, e2002527.	5.6	67
38	Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genetics, 2016, 12, e1005839.	3.5	56
39	ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans. Scientific Reports, 2016, 6, 31124.	3.3	11
40	Chitosan Derivatives Active against Multidrug-Resistant Bacteria and Pathogenic Fungi: <i>In Vivo</i> Evaluation as Topical Antimicrobials. Molecular Pharmaceutics, 2016, 13, 3578-3589.	4.6	71
41	Mode of Action of a Designed Antimicrobial Peptide: High Potency against Cryptococcus neoformans. Biophysical Journal, 2016, 111, 1724-1737.	0.5	37
42	Chromatin Immunoprecipitation (ChIP) Assay in Candida albicans. Methods in Molecular Biology, 2016, 1356, 43-57.	0.9	6
43	A comprehensive model to predict mitotic division in budding yeasts. Molecular Biology of the Cell, 2015, 26, 3954-3965.	2.1	25
44	Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure–Activity Relationship, and Membrane-Active Mode of Action. ACS Applied Materials & Interfaces, 2015, 7, 1804-1815.	8.0	134
45	A Surprising Role for the Sch9 Protein Kinase in Chromosome Segregation in <i>Candida albicans</i> . Genetics, 2015, 199, 671-674.	2.9	10
46	Establishing a national fungal genetic resource to build a major cog for the bioeconomy. Current Science, 2015, 109, 1033.	0.8	4
47	Establishing a national fungal genetic resource to build a major cog for the bioeconomy. Current Science, 2015, 109, 1033.	0.8	2
48	Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in Candida albicans. PLoS Genetics, 2014, 10, e1004344.	3.5	37
49	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	3.5	336
50	The process of kinetochore assembly in yeasts. FEMS Microbiology Letters, 2013, 338, 107-117.	1.8	13
51	Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in <i>Candida albicans</i> . Genome Research, 2013, 23, 638-652.	5.5	76
52	Ordered Kinetochore Assembly in the Human-Pathogenic Basidiomycetous Yeast Cryptococcus neoformans. MBio, 2013, 4, e00614-13.	4.1	42
53	A Stable Hybrid Containing Haploid Genomes of Two Obligate Diploid Candida Species. Eukaryotic Cell, 2013, 12, 1061-1071.	3.4	1
54	A Coordinated Interdependent Protein Circuitry Stabilizes the Kinetochore Ensemble to Protect CENP-A in the Human Pathogenic Yeast Candida albicans. PLoS Genetics, 2012, 8, e1002661.	3.5	47

KAUSTUV SANYAL

#	Article	IF	CITATIONS
55	How Do Microbial Pathogens Make CENs?. PLoS Pathogens, 2012, 8, e1002463.	4.7	12
56	CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast <i>Candida albicans</i> . Molecular Microbiology, 2011, 80, 14-32.	2.5	30
57	Functional characterization of the Saccharomyces cerevisiae protein Chl1 reveals the role of sister chromatid cohesion in the maintenance of spindle length during S-phase arrest. BMC Genetics, 2011, 12, 83.	2.7	23
58	The Essentiality of the Fungus-Specific Dam1 Complex Is Correlated with a One-Kinetochore-One-Microtubule Interaction Present throughout the Cell Cycle, Independent of the Nature of a Centromere. Eukaryotic Cell, 2011, 10, 1295-1305.	3.4	41
59	Diversity in Requirement of Genetic and Epigenetic Factors for Centromere Function in Fungi. Eukaryotic Cell, 2011, 10, 1384-1395.	3.4	39
60	Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, <i>Candida albicans</i> and <i>Candida dubliniensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19797-19802.	7.1	81
61	Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14877-14882.	7.1	91
62	Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11374-11379.	7.1	178
63	The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12969-12974.	7.1	66
64	The IML3/MCM19 gene of Saccharomyces cerevisiae is required for a kinetochore-related process during chromosome segregation. Molecular Genetics and Genomics, 2001, 265, 249-257.	2.1	25
65	The MCM16 gene of the yeast Saccharomyces cerevisiae is required for chromosome segregation. Molecular Genetics and Genomics, 1998, 260, 242-250.	2.4	19
66	Early Diverging Fungus <i>Mucor circinelloides</i> Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. SSRN Electronic Journal, 0, , .	0.4	1