René F Ketting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555950/publications.pdf

Version: 2024-02-01

49 papers 8,434 citations

172457 29 h-index 206112 48 g-index

64 all docs

64 docs citations

64 times ranked 8451 citing authors

#	Article	IF	CITATIONS
1	How stress can affect your sex appeal. Developmental Cell, 2022, 57, 291-292.	7.0	O
2	Membrane-associated cytoplasmic granules carrying the Argonaute protein WAGO-3 enable paternal epigenetic inheritance in Caenorhabditis elegans. Nature Cell Biology, 2022, 24, 217-229.	10.3	11
3	The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance epigenetic signals in the germline. PLoS Genetics, 2022, 18, e1010245.	3.5	7
4	Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish. Development (Cambridge), 2021, 148, .	2.5	4
5	Concepts and functions of small RNA pathways in C. elegans. Current Topics in Developmental Biology, 2021, 144, 45-89.	2.2	29
6	The double-stranded DNA-binding proteins TEBP-1 and TEBP-2 form a telomeric complex with POT-1. Nature Communications, 2021, 12, 2668.	12.8	12
7	Protease-mediated processing of Argonaute proteins controls small RNA association. Molecular Cell, 2021, 81, 2388-2402.e8.	9.7	13
8	Structural basis of PETISCO complex assembly during piRNA biogenesis in <i>C. elegans</i> Genes and Development, 2021, 35, 1304-1323.	5.9	14
9	Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nature Communications, 2021, 12, 5671.	12.8	23
10	Intrinsically disordered protein PIDâ€2 modulates Z granules and is required for heritable piRNAâ€induced silencing in the <i>Caenorhabditis elegans</i>	7.8	14
11	A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. ELife, 2020, 9, .	6.0	45
12	Function and Evolution of Nematode RNAi Pathways. Non-coding RNA, 2019, 5, 8.	2.6	49
13	PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes and Development, 2019, 33, 857-870.	5.9	34
14	RppH can faithfully replace TAP to allow cloning of 5′-triphosphate carrying small RNAs. MethodsX, 2019, 6, 265-272.	1.6	21
15	Maternal and zygotic gene regulatory effects of endogenous RNAi pathways. PLoS Genetics, 2019, 15, e1007784.	3.5	19
16	Trimming it short: PNLDC1 is required for piRNA maturation during mouse spermatogenesis. EMBO Reports, 2018, 19, .	4.5	6
17	<scp>GTSF</scp> â€1 is required for formation of a functional <scp>RNA</scp> â€dependent <scp>RNA</scp> Polymerase complex in <i>Caenorhabditis elegans</i> . EMBO Journal, 2018, 37, .	7.8	23
18	Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Reports, 2018, 24, 1-10.e4.	6.4	124

#	Article	IF	CITATIONS
19	Tdrd6a Regulates the Aggregation of Buc into Functional Subcellular Compartments that Drive Germ Cell Specification. Developmental Cell, 2018, 46, 285-301.e9.	7.0	68
20	Characterization of genetic loss-of-function of Fus in zebrafish. RNA Biology, 2017, 14, 29-35.	3.1	16
21	Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biology, 2016, 17, 146.	8.8	41
22	Piwi proteins and piRNAs in mammalian oocytes and early embryos: From sample to sequence. Genomics Data, 2015, 5, 309-313.	1.3	50
23	Piwi Proteins and piRNAs in Mammalian Oocytes and Early Embryos. Cell Reports, 2015, 10, 2069-2082.	6.4	183
24	Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals. Rna, 2015, 21, 911-922.	3.5	19
25	Maternal piRNAs Are Essential for Germline Development following De Novo Establishment of Endo-siRNAs in Caenorhabditis elegans. Developmental Cell, 2015, 34, 448-456.	7.0	101
26	piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals. PLoS ONE, 2015, 10, e0124860.	2.5	48
27	PID-1 is a novel factor that operates during 21U-RNA biogenesis in <i>Caenorhabditis elegans</i> and Development, 2014, 28, 683-688.	5.9	37
28	The evolutionary journey of Argonaute proteins. Nature Structural and Molecular Biology, 2014, 21, 743-753.	8.2	400
29	MUT-14 and SMUT-1 DEAD Box RNA Helicases Have Overlapping Roles in Germline RNAi and Endogenous siRNA Formation. Current Biology, 2014, 24, 839-844.	3.9	55
30	DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biology, 2013, 14, R50.	9.6	109
31	Is This Mine? Small RNAs Help to Decide. Developmental Cell, 2013, 27, 599-601.	7.0	4
32	piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles. Rna, 2013, 19, 345-356.	3.5	12
33	PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nature Reviews Genetics, 2013, 14, 523-534.	16.3	306
34	Extremely stable Piwi-induced gene silencing in <i>Caenorhabditis elegans</i> . EMBO Journal, 2012, 31, 3422-3430.	7.8	197
35	Differential Impact of the HEN1 Homolog HENN-1 on 21U and 26G RNAs in the Germline of Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002702.	3.5	96
36	The Many Faces of RNAi. Developmental Cell, 2011, 20, 148-161.	7.0	316

#	Article	lF	CITATIONS
37	Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO Journal, 2011, 30, 3298-3308.	7.8	70
38	Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO Journal, 2010, 29, 3688-3700.	7.8	145
39	The role of small non-coding RNAs in genome stability and chromatin organization. Journal of Cell Science, 2010, 123, 1825-1839.	2.0	99
40	MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1000903.	3 . 5	67
41	RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Nature Structural and Molecular Biology, 2009, 16, 207-211.	8.2	68
42	CDE-1 Affects Chromosome Segregation through Uridylation of CSR-1-Bound siRNAs. Cell, 2009, 139, 135-148.	28.9	164
43	The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation. Cell, 2009, 139, 123-134.	28.9	416
44	Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO Journal, 2008, 27, 2702-2711.	7.8	273
45	Piwi and piRNAs Act Upstream of an Endogenous siRNA Pathway to Suppress Tc3 Transposon Mobility in the Caenorhabditis elegans Germline. Molecular Cell, 2008, 31, 79-90.	9.7	392
46	A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell, 2007, 129, 69-82.	28.9	989
47	Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432, 231-235.	27.8	2,340
48	A genetic link between co-suppression and RNA interference in C. elegans. Nature, 2000, 404, 296-298.	27.8	199
49	mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD. Cell, 1999, 99, 133-141.	28.9	687