List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559483/publications.pdf Version: 2024-02-01

WAITED DIIDKA

#	Article	IF	CITATIONS
1	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Indicators for biodiversity in agricultural landscapes: a panâ€European study. Journal of Applied Ecology, 2008, 45, 141-150.	4.0	530
4	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	12.6	433
5	Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature, 1994, 372, 765-767.	27.8	386
6	The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2383-2389.	2.6	378
7	Contrasting changes in taxonomic, phylogenetic and functional diversity during a longâ€ŧerm succession: insights into assembly processes. Journal of Ecology, 2013, 101, 857-866.	4.0	282
8	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	6.4	279
9	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	5.2	232
10	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	5.4	222
11	Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology, 2012, 93, 2297-2297.	3.2	211
12	Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14, 1697-1706.	3.9	189
13	Scoring and analysis of methylationâ€sensitive amplification polymorphisms for epigenetic population studies. Molecular Ecology Resources, 2013, 13, 642-653.	4.8	161
14	Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 2019, 10, 1460.	12.8	139
15	Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conservation Genetics, 2019, 20, 7-17.	1.5	139
16	A comparative test of phylogenetic diversity indices. Oecologia, 2008, 157, 485-495.	2.0	121
17	Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Molecular Ecology, 2014, 23, 3523-3537.	3.9	113
18	The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of <i>Senecio inaequidens</i> . Molecular Ecology, 2010, 19, 3952-3967.	3.9	100

#	Article	IF	CITATIONS
19	Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multispecies transplant experiment. Journal of Applied Ecology, 2017, 54, 127-136.	4.0	97
20	Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology, 2017, 54, 116-126.	4.0	95
21	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	10.3	92
22	Phylogeography of a widespread Asian subtropical tree: genetic east–west differentiation and climate envelope modelling suggest multiple glacial refugia. Journal of Biogeography, 2014, 41, 1710-1720.	3.0	89
23	Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycological Research, 2009, 113, 952-959.	2.5	87
24	Investigating the consequences of climate change under different landâ€use regimes: a novel experimental infrastructure. Ecosphere, 2019, 10, e02635.	2.2	85
25	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	12.8	84
26	Sequence diversity of the MHC DRB gene in the Eurasian beaver (<i>Castor fiber</i>). Molecular Ecology, 2005, 14, 4249-4257.	3.9	80
27	Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia, 2010, 162, 853-863.	2.0	80
28	Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecology Letters, 2012, 15, 732-739.	6.4	80
29	Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecology Letters, 2008, 11, 235-244.	6.4	79
30	Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodiversity and Conservation, 2000, 9, 1297-1311.	2.6	68
31	Cuticular Hydrocarbons and Aggression in the Termite Macrotermes Subhyalinus. Journal of Chemical Ecology, 2004, 30, 365-385.	1.8	66
32	Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytologist, 2006, 172, 127-139.	7.3	65
33	Wolbachia Infections Mimic Cryptic Speciation in Two Parasitic Butterfly Species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE, 2013, 8, e78107.	2.5	65
34	High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Molecular Ecology, 2007, 16, 4715-4727.	3.9	63
35	Structure, stability and ecological significance of natural epigenetic variation: a largeâ€scale survey in <i>Plantago lanceolata</i> . New Phytologist, 2019, 221, 1585-1596.	7.3	61
36	Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytologist, 2009, 183, 470-479.	7.3	60

#	Article	IF	CITATIONS
37	Longâ€ŧerm survival of a urodele amphibian despite depleted major histocompatibility complex variation. Molecular Ecology, 2009, 18, 769-781.	3.9	58
38	Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape. Molecular Ecology, 2007, 16, 3828-3838.	3.9	57
39	Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic and Applied Ecology, 2003, 4, 307-316.	2.7	53
40	Combining spatial and phylogenetic eigenvector filtering in trait analysis. Global Ecology and Biogeography, 2009, 18, 745-758.	5.8	53
41	Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity, 1999, 83, 476-484.	2.6	52
42	Mitochondrial phylogeography of the Eurasian beaver Castor fiber L Molecular Ecology, 2005, 14, 3843-3856.	3.9	51
43	Increased genetic differentiation but no reduced genetic diversity in peripheral vs. central populations of a steppe grass. American Journal of Botany, 2011, 98, 1173-1179.	1.7	51
44	Differentiation of reproductive and competitive ability in the invaded range of Senecio inaequidens: the role of genetic Allee effects, adaptive and nonadaptive evolution. New Phytologist, 2011, 192, 529-541.	7.3	50
45	The neglected importance of floral traits in traitâ€based plant community assembly. Journal of Vegetation Science, 2020, 31, 529-539.	2.2	49
46	Low genetic variability and strong differentiation among isolated populations of the rare steppe grass <i>Stipa capillata</i> L. in Central Europe. Plant Biology, 2010, 12, 526-536.	3.8	48
47	Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species. PLoS ONE, 2011, 6, e14622.	2.5	46
48	Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda:) Tj ETQq0 0 0 rgB1	- /Qyerlock	2 10 Tf 50 30
49	Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLoS ONE, 2011, 6, e21302.	2.5	43
50	Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 2014, 202, 864-873.	7.3	43
51	Tree phylogenetic diversity promotes host–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160275.	2.6	41
52	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
53	Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany, 2012, 110, 977-986.	2.9	39
54	Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense. Conservation Genetics, 2012, 13, 581-592.	1.5	37

#	Article	IF	CITATIONS
55	Genotypic and Genetic Diversity of the Common WeedCirsium arvense(Asteraceae). International Journal of Plant Sciences, 2004, 165, 437-444.	1.3	36
56	Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages. Journal of Plant Ecology, 2017, 10, 242-251.	2.3	36
57	Invasion success in polyploids: the role of inbreeding in the contrasting colonization abilities of diploid versus tetraploid populations of <i>Centaurea stoebe</i> s.l Journal of Ecology, 2017, 105, 425-435.	4.0	36
58	Geographic variability of ecological niches of plant species: are competition and stress relevant?. Ecography, 2002, 25, 721-729.	4.5	35
59	Are local plants the best for ecosystem restoration? It depends on how you analyze the data. Ecology and Evolution, 2017, 7, 10683-10689.	1.9	35
60	Synchronous Pulsed Flowering: Analysis of the Flowering Phenology in Juncus (Juncaceae). Annals of Botany, 2007, 100, 1271-1285.	2.9	34
61	Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theoretical and Applied Genetics, 2010, 120, 1151-1162.	3.6	34
62	Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Molecular Ecology, 2010, 19, 4936-4948.	3.9	34
63	Extreme genetic depauperation and differentiation of both populations and species in Eurasian feather grasses (Stipa). Plant Systematics and Evolution, 2013, 299, 259-269.	0.9	33
64	Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. Journal of Ecology, 2019, 107, 2697-2712.	4.0	33
65	Effects of landscape structure on genetic diversity of Geum urbanum L. populations in agricultural landscapes. Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 549-559.	1.2	30
66	Pollen limitation and inbreeding depression in an â€~old rare' bumblebeeâ€pollinated grassland herb. Plant Biology, 2011, 13, 857-864.	3.8	30
67	Species diversity and population density affect genetic structure and gene dispersal in a subtropical understory shrub. Journal of Plant Ecology, 2012, 5, 270-278.	2.3	30
68	Land-use effects on genetic structure of a common grassland herb: A matter of scale. Basic and Applied Ecology, 2011, 12, 440-448.	2.7	29
69	Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages. Oecologia, 2014, 174, 533-543.	2.0	29
70	GENETIC VARIATION AND POPULATION STRUCTURE OF THE EURASIAN BEAVER CASTOR FIBER IN EASTERN EUROPE AND ASIA. Journal of Mammalogy, 2005, 86, 1059-1067.	1.3	28
71	Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Annals of Botany, 2012, 110, 585-593.	2.9	28
72	Nuclear and mitochondrial genetic structure in the <scp>E</scp> urasian beaver (<i><scp>C</scp>astor fiber</i>) – implications for future reintroductions. Evolutionary Applications, 2014, 7, 645-662.	3.1	28

#	Article	IF	CITATIONS
73	Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. Journal of Ecology, 2014, 102, 437-446.	4.0	28
74	Intraspecific variability in frost hardiness of Fagus sylvatica L European Journal of Forest Research, 2015, 134, 433-441.	2.5	28
75	Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. Scientific Reports, 2016, 6, 36672.	3.3	27
76	Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecology and Evolution, 2017, 7, 11079-11091.	1.9	26
77	Differences in the trait compositions of non-indigenous and native plants across Germany. Biological Invasions, 2010, 12, 2001-2012.	2.4	25
78	Strong genetic differentiation between Gymnadenia conopsea and G. densiflora despite morphological similarity. Plant Systematics and Evolution, 2011, 293, 213-226.	0.9	25
79	The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges. Biological Invasions, 2016, 18, 1895-1910.	2.4	25
80	The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography, 2003, 26, 652-660.	4.5	24
81	Does Land-Use Intensification Decrease Plant Phylogenetic Diversity in Local Grasslands?. PLoS ONE, 2014, 9, e103252.	2.5	23
82	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes, 0, 5, .	1.0	23
83	Gene flow and genetic diversity in cultivated and wild cacao (<i>Theobroma cacao</i>) in Bolivia. American Journal of Botany, 2013, 100, 2271-2279.	1.7	22
84	Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chamaegigas intrepidus. Phytocoenologia, 2005, 35, 449-468.	0.5	21
85	Plant ecotype affects interacting organisms across multiple trophic levels. Basic and Applied Ecology, 2016, 17, 688-695.	2.7	21
86	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	3.6	21
87	Isolation and characterization of microsatellite loci in Geum urbanum (Rosaceae) and their transferability within the genus Geum. Molecular Ecology Notes, 2004, 4, 209-212.	1.7	20
88	Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic metaâ€analysis of global scale. New Phytologist, 2019, 223, 2063-2075.	7.3	20
89	Bioclimatic regions influence genetic structure of four Jordanian <i>Stipa</i> species. Plant Biology, 2013, 15, 882-891.	3.8	19
90	Short-term fitness and long-term population trends in the orchid Anacamptis morio. Plant Ecology, 2012, 213, 1583-1595.	1.6	18

#	Article	IF	CITATIONS
91	Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients. Alpine Botany, 2014, 124, 115-129.	2.4	18
92	Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecology and Management, 2020, 465, 117820.	3.2	17
93	THE RELATIONSHIP BETWEEN GLOBAL AND REGIONAL DISTRIBUTION DIMINISHES AMONG PHYLOGENETICALLY BASAL SPECIES. Evolution; International Journal of Organic Evolution, 2004, 58, 2622-2633.	2.3	16
94	Genetic relationships within colonies suggest genetic monogamy in the Eurasian beaver (Castor fiber). Mammal Research, 2015, 60, 139-147.	1.3	16
95	Plants adapted to warmer climate do not outperform regional plants during a natural heat wave. Ecology and Evolution, 2016, 6, 4160-4165.	1.9	16
96	Species-specific effects of genetic diversity and species diversity of experimental communities on early tree performance. Journal of Plant Ecology, 2017, 10, 252-258.	2.3	16
97	Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. New Phytologist, 2022, 235, 773-785.	7.3	16
98	Genetic Population Structure and Reproductive Fitness in the Plant <i>Sanguisorba officinalis</i> in Populations Supporting Colonies of an Endangered <i>Maculinea</i> Butterfly. International Journal of Plant Sciences, 2008, 169, 253-262.	1.3	15
99	Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch. Oecologia, 2019, 189, 687-697.	2.0	15
100	Forest fragmentation and edge effects on the genetic structure ofClusia sphaerocarpaandC. lechleri(Clusiaceae) in tropical montane forests. Journal of Tropical Ecology, 2013, 29, 321-329.	1.1	14
101	Populations restored using regional seed are genetically diverse and similar to natural populations in the region. Journal of Applied Ecology, 2022, 59, 2234-2244.	4.0	14
102	Differentiation between populations of a termite in eastern Africa: implications for biogeography. Journal of Biogeography, 2006, 33, 1993-2000.	3.0	13
103	Pollen and ovule production in wind-pollinated species with special reference to Juncus. Plant Systematics and Evolution, 2010, 286, 191-197.	0.9	13
104	Matrix quality and habitat configuration interactively determine functional connectivity in a widespread bush cricket at a small spatial scale. Landscape Ecology, 2012, 27, 381-392.	4.2	13
105	Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum. Acta Oecologica, 2015, 69, 129-136.	1.1	13
106	River dynamics shape clonal diversity and genetic structure of an Amazonian understorey herb. Journal of Ecology, 2011, 99, 373-382.	4.0	12
107	Separation in flowering time contributes to the maintenance of sympatric cryptic plant lineages. Ecology and Evolution, 2015, 5, 2172-2184.	1.9	12
108	Heritability of early growth traits and their plasticity in 14 woody species of Chinese subtropical forest. Journal of Plant Ecology, 2017, 10, 222-231.	2.3	12

#	Article	IF	CITATIONS
109	Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 2020, 227, 744-756.	7.3	12
110	Historical comparisons show evolutionary changes in drought responses in European plant species after two decades of climate change. Basic and Applied Ecology, 2022, 58, 26-38.	2.7	12
111	Isolation and characterization of microsatellite markers in the invasive shrub Mahonia aquifolium (Berberidaceae) and their applicability in related species. Molecular Ecology Notes, 2006, 6, 948-950.	1.7	11
112	Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars. Plant Systematics and Evolution, 2008, 275, 219-229.	0.9	11
113	Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?. PLoS ONE, 2015, 10, e0144217.	2.5	10
114	Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE, 2018, 13, e0194726.	2.5	10
115	Effects of Inbreeding, Outbreeding, and Supplemental Pollen on the Reproduction of a Hummingbird-pollinated Clonal Amazonian Herb. Biotropica, 2011, 43, 183-191.	1.6	9
116	Reduced genetic variation mainly affects early rather than late life-cycle stages. Biological Conservation, 2013, 159, 367-374.	4.1	9
117	Ploidy in the alpine sedgeKobresia pygmaea(Cyperaceae) and related species: combined application of chromosome counts, new microsatellite markers and flow cytometry. Botanical Journal of the Linnean Society, 2014, 176, 22-35.	1.6	9
118	Darwin's legacy in Platanthera: are there more than two species in the Platanthera bifolia/chlorantha group?. Plant Systematics and Evolution, 2017, 303, 419-431.	0.9	9
119	Intra- and interspecific tree diversity promotes multitrophic plant–Hemiptera–ant interactions in a forest diversity experiment. Basic and Applied Ecology, 2018, 29, 89-97.	2.7	9
120	Isolation and characterization of microsatellite loci in the invasive Alliaria petiolata (Brassicaceae). Molecular Ecology Notes, 2004, 4, 173-175.	1.7	8
121	Biological flora of Central Europe: Muscari tenuiflorum Tausch. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 81-101.	1.2	8
122	Holocene re olonisation, central–marginal distribution and habitat specialisation shape population genetic patterns within an Atlantic European grass species. Plant Biology, 2015, 17, 684-693.	3.8	8
123	Clonality increases with snow depth in the arctic dwarf shrub Empetrum hermaphroditum. American Journal of Botany, 2016, 103, 2105-2114.	1.7	8
124	Genetic diversity and differentiation follow secondary succession in a multi-species study on woody plants from subtropical China. Journal of Plant Ecology, 0, , rtw054.	2.3	8
125	Differential role of a persistent seed bank for genetic variation in early vs. late successional stages. PLoS ONE, 2018, 13, e0209840.	2.5	8
126	Reproductive fitness, population size and genetic variation in Muscari tenuiflorum (Hyacinthaceae): The role of temporal variation. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 736-743.	1.2	7

WALTER DURKA

#	Article	IF	CITATIONS
127	Gene flow in, and mating system of, <i>Rhododendron simsii</i> in a nature reserve in subtropical China. Nordic Journal of Botany, 2017, 35, 1-7.	0.5	7
128	Evolution during seed production for ecological restoration? A molecular analysis of 19 species finds only minor genomic changes. Journal of Applied Ecology, 2022, 59, 1383-1393.	4.0	7
129	Identification and characterization of microsatellite loci in the rush <i>Juncus effusus</i> (Juncaceae) ¹ . American Journal of Botany, 2012, 99, e53-5.	1.7	6
130	Outcrossing breeding system does not compromise invasiveness in Buddleja davidii. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 843-848.	1.2	6
131	Establishment rate of regional provenances mirrors relative share and germination rate in a climate change experiment. Ecosphere, 2020, 11, e03093.	2.2	6
132	Biological flora of Central Europe: Ceratocapnos claviculata (L.) Lidén. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 61-77.	2.7	5
133	Biological Flora of Central Europe: Euphorbia palustris L. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 57-71.	2.7	4
134	Vegetation databases as a tool to analyse factors affecting the range expansion of the forest understory herb <i>Ceratocapnos claviculata</i> . Journal of Vegetation Science, 2011, 22, 726-740.	2.2	4
135	Polymorphic microsatellite markers in the invasive shrub <i>Buddleja davidii</i> (Scrophulariaceae) ¹ . American Journal of Botany, 2011, 98, e39-40.	1.7	4
136	A suite of multiplexed microsatellite loci for the ground beetle Abax parallelepipedus (Piller and) Tj ETQq0 0 0 rgB	BT /Overloo 0.8	ck 10 Tf 50 38
137	The potential of multispectral imaging flow cytometry for environmental monitoring. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 782-799.	1.5	4
138	How to characterize and predict alien species? A response to Pyseket al.(2004). Diversity and Distributions, 2005, 11, 121-123.	4.1	3
139	Nine polymorphic microsatellite loci for the parasitic wasp Neotypus melanocephalus (Hymenoptera:) Tj ETQq1 1	0.78431 1.7	4 rgBT /Overle
140	Isolation and characterization of microsatellite loci for Euphorbia palustris (Euphorbiaceae). Genome, 2009, 52, 1037-1039.	2.0	3
141	Performance and response to defoliation of Sanguisorba officinalis (Rosaceae) seedlings from mown and successional habitats. Botany, 2010, 88, 691-697.	1.0	3
142	Recovery in the melting pot: complex origins and restored genetic diversity in newly established Eurasian beaver (Rodentia: Castoridae) populations. Biological Journal of the Linnean Society, 2022, 135, 793-811.	1.6	3
143	Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species. Scientific Reports, 2022, 12, 7035.	3.3	3
144	No genetic adaptation of the Mediterranean keystone shrub Cistus ladanifer in response to	2.5	2

experimental fire and extreme drought. PLoS ONE, 2018, 13, e0199119. 144

#	Article	IF	CITATIONS
145	Colonisation of secondary habitats in mining sites by Labidura riparia (Dermaptera: Labiduridae) from multiple natural source populations. Journal of Insect Conservation, 2021, 25, 349-359.	1.4	2
146	Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	2
147	Identification of 10 microsatellite loci in the earwig Labidura riparia (Dermaptera, Labiduridae). Molecular Ecology Notes, 2006, 6, 877-879.	1.7	1
148	Isolation and Characterization of Microsatellite Loci in the Rush Juncus atratus (Juncaceae). Conservation Genetics, 2006, 7, 149-151.	1.5	1
149	Genetic structure and dispersal in a small South African rodent. Is dispersal female-biased?. Mammalian Biology, 2009, 74, 478-487.	1.5	1
150	Development and characterization of simple sequence repeat markers for the invasive tetraploid waterweed <i>Elodea nuttallii</i> (Hydrocharitaceae). Applications in Plant Sciences, 2018, 6, e1146.	2.1	1
151	THE RELATIONSHIP BETWEEN GLOBAL AND REGIONAL DISTRIBUTION DIMINISHES AMONG PHYLOGENETICALLY BASAL SPECIES. Evolution; International Journal of Organic Evolution, 2004, 58, 2622.	2.3	0