
Leonidas Bleris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Seminars in Cancer Biology, 2022, 84, 50-59.	9.6	36
2	Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Scientific Reports, 2022, 12, 1481.	3.3	4
3	Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARSâ€CoVâ€2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids. Small, 2022, 18, e2107832.	10.0	19
4	Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARSâ€CoVâ€2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids (Small 12/2022). Small, 2022, 18, .	10.0	0
5	Genetic physical unclonable functions in human cells. Science Advances, 2022, 8, eabm4106.	10.3	4
6	Cell morphology-based machine learning models for human cell state classification. Npj Systems Biology and Applications, 2021, 7, 23.	3.0	25
7	Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen <i>Xanthomonas</i> . FEMS Microbiology Reviews, 2020, 44, 1-32.	8.6	148
8	Uncoupling gene expression noise along the central dogma using genome engineered human cell lines. Nucleic Acids Research, 2020, 48, 9406-9413.	14.5	26
9	Robust Filtering and Noise Suppression in Intragenic miRNA-Mediated Host Regulation. IScience, 2020, 23, 101595.	4.1	8
10	p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 2019, 28, 1860-1878.e9.	6.4	68
11	Coevolutionary Couplings Unravel PAM-Proximal Constraints of CRISPR-SpCas9. Biophysical Journal, 2019, 117, 1684-1691.	0.5	2
12	Mapping the operational landscape of microRNAs in synthetic gene circuits. Npj Systems Biology and Applications, 2018, 4, 6.	3.0	12
13	CRISPR-Based Editing Reveals Edge-Specific Effects in Biological Networks. CRISPR Journal, 2018, 1, 286-293.	2.9	10
14	Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Molecular Pharmaceutics, 2018, 15, 2984-2990.	4.6	11
15	Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor. Molecular Pharmaceutics, 2018, 15, 2973-2983.	4.6	39
16	Techniques and strategies employing engineered transcription factors. Current Opinion in Biomedical Engineering, 2017, 4, 152-162.	3.4	1
17	Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Research, 2016, 44, gkw908.	14.5	55
18	Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions. PLoS ONE, 2016, 11, e0144970.	2.5	22

LEONIDAS BLERIS

#	Article	IF	CITATIONS
19	Discriminating direct and indirect connectivities in biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12893-12898.	7.1	26
20	Reconfigurable hybrid interface for molecular marker diagnostics and in-situ reporting. Biosensors and Bioelectronics, 2015, 74, 744-750.	10.1	7
21	CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Research, 2015, 43, 1297-1303.	14.5	46
22	MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells. PLoS Computational Biology, 2015, 11, e1004653.	3.2	38
23	Biological 2-Input Decoder Circuit in Human Cells. ACS Synthetic Biology, 2014, 3, 627-633.	3.8	13
24	Transcription Activator-like Effectors: A Toolkit for Synthetic Biology. ACS Synthetic Biology, 2014, 3, 708-716.	3.8	55
25	Assembly and Validation of Versatile Transcription Activator-Like Effector Libraries. Scientific Reports, 2014, 4, 4857.	3.3	7
26	Transcripts for combined synthetic microRNA and gene delivery. Molecular BioSystems, 2013, 9, 1919.	2.9	9
27	Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells. ACS Synthetic Biology, 2013, 2, 255-262.	3.8	14
28	Synthetic mammalian transgene negative autoregulation. Molecular Systems Biology, 2013, 9, 670.	7.2	36
29	Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Scientific Reports, 2012, 2, 897.	3.3	62
30	MicroRNA Circuits for Transcriptional Logic. Methods in Molecular Biology, 2012, 813, 169-186.	0.9	10
31	Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Molecular Systems Biology, 2011, 7, 519.	7.2	150
32	Rationally designed logic integration of regulatory signals in mammalian cells. Nature Nanotechnology, 2010, 5, 666-670.	31.5	103
33	Linear Control Theory for Gene Network Modeling. PLoS ONE, 2010, 5, e12785.	2.5	17
34	Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Research, 2010, 38, 2692-2701.	14.5	59
35	A universal RNAi-based logic evaluator that operates in mammalian cells. Nature Biotechnology, 2007, 25, 795-801.	17.5	495