A M Koekemoer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559007/publications.pdf

Version: 2024-02-01

690 70,428 132 233
papers citations h-index g-index

697 697 697 10241 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	7.7	1,590
2	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE ⟨i⟩HUBBLE SPACE TELESCOPE⟨ i⟩ OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	7.7	1,549
3	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND 2COSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2010, 721, 193-221.	4.5	1,485
4	The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging. Astrophysical Journal, 2004, 600, L93-L98.	4.5	1,351
5	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCE (i>z = 3. Astrophysical Journal, 2014, 788, 28.	4.5	944
6	GOODS– <i>Herschel</i> : an infrared main sequence for star-forming galaxies. Astronomy and Astrophysics, 2011, 533, A119.	5.1	889
7	THE COSMOS2015 CATALOG: EXPLORING THE 1Â< z <Â6 UNIVERSE WITH HALF A MILLION GALAXIES. Astrophysical Journal, Supplement Series, 2016, 224, 24.	7.7	784
8	zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < <i>z</i> < 3 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 70-85.	7.7	775
9	Passively Evolving Earlyâ€Type Galaxies at 1.4 ≲z≲ 2.5 in the Hubble Ultra Deep Field. Astrophysical Journal 2005, 626, 680-697.	' 4 . 5	737
	2003, 020, 000 037.		
10	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755.	4.7	687
10		4.7 7.7	687
	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement		
11	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal,	7.7	672
11 12	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM ⟨i⟩z⟨ i⟩â^1/4 2.5 TO⟨i⟩z⟨ i⟩	7.7	672
11 12 13	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM ⟨i⟩z⟨ i⟩â^1/4 2.5 TO⟨i⟩z⟨ i⟩ 0.1. Astrophysical Journal, 2011, 742, 96. The ⟨i⟩ Herschel ⟨ i⟩ view of the dominant mode of galaxy growth from ⟨i⟩z⟨ i⟩ = 4 to the present day.	7.7 7.7 i>â^1/4 4.5	672 659 590
11 12 13	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM ⟨i⟩z⟨ i⟩â⁻¹⅓ 2.5 TO⟨i⟩z⟨ i⟩ 0.1. Astrophysical Journal, 2011, 742, 96. The⟨i⟩Herschel⟨ i⟩view of the dominant mode of galaxy growth from⟨i⟩z⟨ i⟩ = 4 to the present day. Astronomy and Astrophysics, 2015, 575, A74. Improved constraints on the expansion rate of the Universe up to z â⁻⅓ 1.1 from the spectroscopic evolution of cosmic chronometers. Journal of Cosmology and Astroparticle Physics, 2012, 2012,	7.7 7.7 i>â^1/4 4.5	672 659 590 582
11 12 13 14	The Hubble Ultra Deep Field. Astronomical Journal, 2006, 132, 1729-1755. The First Release COSMOS Optical and Nearâ€IR Data and Catalog. Astrophysical Journal, Supplement Series, 2007, 172, 99-116. THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROM ⟨i⟩z⟨ i⟩â^1/4 2.5 TO⟨i⟩z⟨ i⟩ 0.1. Astrophysical Journal, 2011, 742, 96. The⟨i⟩Herschel⟨ i⟩view of the dominant mode of galaxy growth from⟨i⟩z⟨ i⟩= 4 to the present day. Astronomy and Astrophysics, 2015, 575, A74. Improved constraints on the expansion rate of the Universe up to zâ^1/4 1.1 from the spectroscopic evolution of cosmic chronometers. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 006-006. GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 <⟨i⟩z⟨ i⟩< 2 FROM THE S-COSMOS SURVEY.	7.7 7.7 i>â^1/4 4.5 5.1	672 659 590 582

#	Article	IF	CITATIONS
19	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2011, 730, 61.	4.5	515
20	Sâ€COSMOS: The <i>Spitzer</i> Legacy Survey of the <i>Hubble Space Telescope</i> ACS 2 deg ² COSMOS Field I: Survey Strategy and First Analysis. Astrophysical Journal, Supplement Series, 2007, 172, 86-98.	7.7	503
21	Chandra Deep Field South: The 1 Ms Catalog. Astrophysical Journal, Supplement Series, 2002, 139, 369-410.	7.7	501
22	IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA. Astrophysical Journal, 2012, 748, 142.	4.5	500
23	THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2011, 195, 10.	7.7	488
24	THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE. Astrophysical Journal, Supplement Series, 2009, 184, 218-229.	7.7	481
25	The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets. Astrophysical Journal, 2007, 660, L1-L6.	4.5	465
26	NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY-GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM $\langle i \rangle z \langle i \rangle = 0.2$ to $\langle i \rangle z \langle i \rangle = 1$. Astrophysical Journal, 2012, 744, 159.	4.5	437
27	The Frontier Fields: Survey Design and Initial Results. Astrophysical Journal, 2017, 837, 97.	4.5	433
28	NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 768, 71.	4.5	428
29	STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS. Astrophysical Journal, Supplement Series, 2012, 203, 24.	7.7	410
30	The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges. Astronomical Journal, 2006, 131, 2826-2842.	4.7	408
31	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD. Astrophysical Journal, Supplement Series, 2013, 207, 24.	7.7	400
32	THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5-12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal Letters, 2013, 763, L7.	8.3	397
33	COSMOS: <i>Hubble Space Telescope</i> Observations. Astrophysical Journal, Supplement Series, 2007, 172, 38-45.	7.7	392
34	CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT <i>z</i> f>â^1/4 2. Astrophysical Journal, 2013, 765, 104.	4.5	367
35	THE <i>CHANDRA</i> COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 184, 158-171.	7.7	361
36	ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO < i> z < /i> $\hat{a}^{-1}/4$ 3. Astrophysical Journal, 2011, 738, 106.	4.5	356

#	Article	IF	CITATIONS
37	zCOSMOS – 10k-bright spectroscopic sample. Astronomy and Astrophysics, 2010, 523, A13.	5.1	354
38	THE CHANDRA DEEP FIELD-SOUTH SURVEY: 7 MS SOURCE CATALOGS. Astrophysical Journal, Supplement Series, 2017, 228, 2.	7.7	337
39	CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT <i>z</i> a^1/4 2. Astrophysical Journal, 2012, 744, 148.	4.5	330
40	A new multifield determination of the galaxy luminosity function at $z=7\hat{a}\in 9$ incorporating the 2012 Hubble Ultra-Deep Field imaging. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2696-2716.	4.4	329
41	Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements. Astrophysical Journal, Supplement Series, 2007, 172, 219-238.	7.7	325
42	THE BULK OF THE BLACK HOLE GROWTH SINCE (i>ze $^1/4$ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION. Astrophysical Journal, 2011, 726, 57.	4.5	315
43	Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the <i>XMM </i> -COSMOS survey. Monthly Notices of the Royal Astronomical Society, 2012, 425, 623-640.	4.4	315
44	EMU: Evolutionary Map of the Universe. Publications of the Astronomical Society of Australia, 2011, 28, 215-248.	3.4	312
45	STAR FORMATION AND DUST OBSCURATION AT <i>z</i> â‰^ 2: GALAXIES AT THE DAWN OF DOWNSIZING. Astrophysical Journal, 2009, 698, L116-L120.	4.5	311
46	The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS. Astronomy and Astrophysics, 2010, 512, A34.	5.1	306
47	THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH. Astrophysical Journal, 2009, 707, 1201-1216.	4.5	304
48	Dark matter maps reveal cosmic scaffolding. Nature, 2007, 445, 286-290.	27.8	302
49	CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE <i>z</i> â%^11 GALAXY. Astrophysical Journal, 2013, 762, 32.	4.5	301
50	The evolution of the hard X-ray luminosity function of AGN. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2531-2551.	4.4	300
51	A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION. Astrophysical Journal, 2013, 775, 93.	4.5	290
52	The Chandra Deep Field–South: The 1 Million Second Exposure. Astrophysical Journal, 2002, 566, 667-674.	4. 5	289
53	ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY. Astrophysical Journal, 2010, 708, 137-157.	4.5	276
54	A magnified young galaxy from about 500 million years after the Big Bang. Nature, 2012, 489, 406-408.	27.8	273

#	Article	IF	CITATIONS
55	SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 753, 114.	4.5	271
56	THE <i>XMM-NEWTON </i> WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 716, 348-369.	4.5	266
57	The VLAâ€COSMOS Survey. II. Source Catalog of the Large Project. Astrophysical Journal, Supplement Series, 2007, 172, 46-69.	7.7	258
58	CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM <i>>z </i> = 8 TO 4. Astrophysical Journal, 2012, 756, 164.	4.5	256
59	CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD. Astrophysical Journal, Supplement Series, 2013, 206, 10.	7.7	252
60	WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE $\langle i \rangle \hat{a}^1/4 \rangle 2$ FROM CANDELS. Astrophysical Journal, 2012, 753, 167.	4.5	251
61	The <i>Chandra</i> Deep Field–South Survey: 2 Ms Source Catalogs. Astrophysical Journal, Supplement Series, 2008, 179, 19-36.	7.7	250
62	STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1*. Astrophysical Journal, 2009, 703, 982-993.	4.5	250
63	TheHubbleHigherzSupernova Search: Supernovae tozâ‰^ 1.6 and Constraints on Type la Progenitor Models. Astrophysical Journal, 2004, 613, 200-223.	4.5	248
64	THE <i>HUBBLE SPACE TELESCOPE</i> WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.2-2 ν m WAVELENGTH. Astrophysical Journal, Supplement Series, 2011, 193, 27.	7.7	247
65	THE RADIAL AND AZIMUTHAL PROFILES OF Mg II ABSORPTION AROUND 0.5 < <i>>z</i> >< 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS. Astrophysical Journal, 2011, 743, 10.	4.5	245
66	The incidence of obscuration in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3550-3567.	4.4	245
67	The Extended Chandra Deep Field–South Survey: Chandra Pointâ€Source Catalogs. Astrophysical Journal, Supplement Series, 2005, 161, 21-40.	7.7	244
68	BULGE GROWTH AND QUENCHING SINCE <i>z</i> = 2.5 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 788, 11.	4.5	244
69	Faint AGNs at <i>z></i> 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe. Astronomy and Astrophysics, 2015, 578, A83.	5.1	241
70	The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2960-2984.	4.4	236
71	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies. Astrophysical Journal, Supplement Series, 2007, 172, 182-195.	7.7	234
72	CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS. Astrophysical Journal, 2014, 795, 163.	4.5	233

#	Article	IF	CITATIONS
73	The XMM- <i>Newton</i> Âwide-field survey in the COSMOS field. Astronomy and Astrophysics, 2009, 497, 635-648.	5.1	230
74	A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS-LUMINOSITY RELATION. Astrophysical Journal, 2010, 709, 97-114.	4.5	227
7 5	A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature, 2013, 502, 524-527.	27.8	223
76	Evolution of the dust emission of massive galaxies up to $\langle i \rangle z \langle i \rangle = 4$ and constraints on their dominant mode of star formation. Astronomy and Astrophysics, 2015, 573, A113.	5.1	221
77	SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS. Astrophysical Journal, 2013, 769, 80.	4.5	220
78	STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS. Astrophysical Journal, 2015, 801, 97.	4.5	218
79	The galaxy stellar mass function at 3.5 a‰ <i>z</i> a‰ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields. Astronomy and Astrophysics, 2015, 575, A96.	5.1	215
80	THE COSMOS-WIRCam NEAR-INFRARED IMAGING SURVEY. I. <i> BzK < /i > -SELECTED PASSIVE AND STAR-FORMING GALAXY CANDIDATES AT <i> z < /i > ≳ 1.4. Astrophysical Journal, 2010, 708, 202-217.</i></i>	4.5	214
81	NEW OBSERVATIONS OF <i>z</i> â^¼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION. Astrophysical Journal, 2014, 793, 113.	4.5	213
82	COSMOS: Threeâ€dimensional Weak Lensing and the Growth of Structure. Astrophysical Journal, Supplement Series, 2007, 172, 239-253.	7.7	212
83	COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since $\langle i \rangle z \langle j \rangle = 1$ of the Luminosity Function of Early, Disk, and Irregular Galaxies. Astrophysical Journal, Supplement Series, 2007, 172, 406-433.	7.7	211
84	THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS <i>z</i> a^1/4 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 768 196.	3,4.5	210
85	DEEP <i>>SPITZER</i> >24 Î⅓m COSMOS IMAGING. I. THE EVOLUTION OF LUMINOUS DUSTY GALAXIES—CONFRONTING THE MODELS. Astrophysical Journal, 2009, 703, 222-239.	4.5	207
86	<i>HUBBLE SPACE TELESCOPE</i> COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES. Astrophysical Journal, 2015, 801, 44.	4.5	207
87	DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING (i>XMM AND (i>CHANDRA COSMOS SAMPLES. Astrophysical Journal, 2011, 742, 61.	4.5	205
88	Galaxies at $z=6-9$ from the WFC3/IR imaging of the Hubble Ultra Deep Field. Monthly Notices of the Royal Astronomical Society, 0, 403, 960-983.	4.4	204
89	A CANDELS-3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < <i>z</i> < 1.5. Astrophysical Journal, 2013, 779, 135.	4.5	202
90	THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 â@½ <i>z</i> < 0.8 IN T DEEP2/AEGIS SURVEY. Astrophysical Journal, 2012, 760, 131.	HE 4.5	201

#	Article	IF	CITATIONS
91	THE <i>CHANDRA</i> COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES. Astrophysical Journal, Supplement Series, 2012, 201, 30.	7.7	200
92	A Classic Type 2 QSO. Astrophysical Journal, 2002, 571, 218-225.	4.5	199
93	ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2009, 696, 396-410.	4.5	197
94	THE MAJORITY OF COMPACT MASSIVE GALAXIES AT < i>z < /i> $\hat{a}^{-1}/4$ 2 ARE DISK DOMINATED. Astrophysical Journal, 2011, 730, 38.	4.5	194
95	CHASING HIGHLY OBSCURED QSOs IN THE COSMOS FIELD. Astrophysical Journal, 2009, 693, 447-462.	4.5	191
96	Discovery of Ghost Cavities in the X-Ray Atmosphere of Abell 2597. Astrophysical Journal, 2001, 562, L149-L152.	4.5	189
97	AGN Host Galaxies at z  ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection. Astrophysical Journal, 2005, 627, L97-L100.	4.5	183
98	THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG. Astrophysical Journal, Supplement Series, 2010, 188, 384-404.	7.7	180
99	ACTIVE GALACTIC NUCLEUS HOST GALAXY MORPHOLOGIES IN COSMOS. Astrophysical Journal, 2009, 691, 705-722.	4.5	179
100	ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < <i>>z</i> >â@ $\frac{1}{2}$ 8.6. Astrophysical Journal, 2010, 719, 1250-1273.	4.5	178
101	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT $\langle i \rangle z \langle j \rangle$ â $^1/_4$ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION. Astrophysical Journal Letters, 2013, 777, L8.	8.3	178
102	CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION. Astrophysical Journal, 2012, 758, 93.	4.5	174
103	New Results from the Xâ€Ray and Optical Survey of the Chandra Deep Field–South: The 300 Kilosecond Exposure. II Astrophysical Journal, 2001, 562, 42-51.	4.5	172
104	CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 & lt; <i>z</i> & lt; 3. Astrophysical Journal, 2015, 800, 39.	4.5	172
105	A robust sample of galaxies at redshifts 6.0 <z<8.7: 2011,="" 2074-2105.<="" 418,="" and="" astronomical="" formation="" masses.="" monthly="" notices="" of="" populations,="" rates="" royal="" society,="" star="" stellar="" td="" the=""><td>4.4</td><td>171</td></z<8.7:>	4.4	171
106	CLASH: THE CONCENTRATION-MASS RELATION OF GALAXY CLUSTERS. Astrophysical Journal, 2015, 806, 4.	4.5	170
107	Type la Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate. Astrophysical Journal, 2018, 853, 126.	4.5	168
108	MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr?. Astrophysical Journal, 2009, 706, L215-L220.	4.5	161

#	Article	IF	Citations
109	THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS. Astrophysical Journal, 2010, 719, 1969-1983.	4.5	159
110	GOODS- <i>HERSCHEL</i> AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT <i>z</i> \hat{a}^{1} /4 2. Astrophysical Journal, 2012, 757, 23.	4.5	157
111	Deep <i>GALEX</i> Imaging of the COSMOS <i>HST</i> Field: A First Look at the Morphology of <i>z</i> â^⅓ 0.7 Starâ€forming Galaxies. Astrophysical Journal, Supplement Series, 2007, 172, 468-493.	7.7	155
112	The Evolution of Disk Galaxies in the GOODS-South Field: Number Densities and Size Distribution. Astrophysical Journal, 2004, 604, L9-L12.	4.5	154
113	Deep ATLAS Radio Observations of the Chandra Deep Field?South/SpitzerWide?Area Infrared Extragalactic Field. Astronomical Journal, 2006, 132, 2409-2423.	4.7	154
114	CLASH: THE ENHANCED LENSING EFFICIENCY OF THE HIGHLY ELONGATED MERGING CLUSTER MACS J0416.1–2403. Astrophysical Journal Letters, 2013, 762, L30.	8.3	153
115	Tracking the impact of environment on the galaxy stellar mass function up to <i>z</i> Â-Â 1 in the 10Âk zCOSMOS sample. Astronomy and Astrophysics, 2010, 524, A76.	5.1	151
116	RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA. Astrophysical Journal, 2014, 794, 5.	4.5	149
117	THE IMPACT OF GALAXY INTERACTIONS ON ACTIVE GALACTIC NUCLEUS ACTIVITY IN zCOSMOS. Astrophysical Journal, 2011, 743, 2.	4.5	148
118	The <i>XMM</i> ― <i>Newton</i> Wideâ€Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of Xâ€Ray–Selected Sources. Astrophysical Journal, Supplement Series, 2007, 172, 353-367.	7.7	147
119			

#	Article	IF	CITATIONS
127	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT <i>z</i> relation and the dependence on Star Formation rate and dust extinction. Astrophysical Journal, 2014, 792, 75.	4.5	140
128	COSMOS2020: A Panchromatic View of the Universe to z $\hat{a}^{1/4}$ 10 from Two Complementary Catalogs. Astrophysical Journal, Supplement Series, 2022, 258, 11.	7.7	140
129	UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD. Astronomical Journal, 2015, 150, 31.	4.7	139
130	The zCOSMOS redshift survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from ⟨i⟩⟨b⟩⟨ i⟩ ~ 1. Astronomy and Astrophysics, 2009, 503, 379-39.	8 ^{5.1}	137
131	The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Largeâ€Scale Structures. Astrophysical Journal, 2008, 675, 1025-1040.	4.5	136
132	The morphologies of massive galaxies at 1 < <i>z</i> < 3 in the CANDELS-UDS field: compact bulges, and the rise and fall of massive discs. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1666-1701.	4.4	136
133	Faint high-redshift AGN in the <i>Chandra</i> deep field south: the evolution of the AGN luminosity function and black hole demography. Astronomy and Astrophysics, 2012, 537, A16.	5.1	136
134	The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties. Astronomy and Astrophysics, 2020, 643, A2.	5.1	136
135	Obscured Active Galactic Nuclei and the Xâ€Ray, Optical, and Farâ€Infrared Number Counts of Active Galactic Nuclei in the GOODS Fields. Astrophysical Journal, 2004, 616, 123-135.	4.5	135
136	Pixel-based correction for Charge Transfer Inefficiency in the <i>Hubble Space Telescope </i> Advanced Camera for Surveys. Monthly Notices of the Royal Astronomical Society, 2010, 401, 371-384.	4.4	133
137	IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES. Astrophysical Journal, Supplement Series, 2010, 187, 560-580.	7.7	133
138	THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW. Astrophysical Journal, Supplement Series, 2013, 209, 3.	7.7	132
139	Morphologies of $z\hat{A}\hat{a}^1\!\!/4\hat{A}0.7$ AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3342-3356.	4.4	132
140	TYPE-la SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE. Astrophysical Journal, 2014, 783, 28.	4.5	132
141	CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING. Astrophysical Journal, 2015, 800, 38.	4.5	132
142	MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT <i>z</i> < 1.4. Astrophysical Journal, 2009, 700, 161-182.	4.5	131
143	EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT <i>>z</i> > 1. Astrophysical Journal, 2011, 742, 111.	4.5	131
144	CANDELS OBSERVATIONS OF THE STRUCTURAL PROPERTIES OF CLUSTER GALAXIES AT $\langle i \rangle z \langle i \rangle = 1.62$. Astrophysical Journal, 2012, 750, 93.	4.5	130

#	Article	IF	CITATIONS
145	S-CANDELS: THE <i>SPITZER</i> -COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS. Astrophysical Journal, Supplement Series, 2015, 218, 33.	7.7	129
146	Evidence for a Massive Poststarburst Galaxy atz â^¼â€‰6.5. Astrophysical Journal, 2005, 635, 832-844.	4.5	128
147	DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES AT <i>z</i> 剳 1.4. Astrophysical Journal, 2012, 755, 26.	4.5	128
148	TRACING THE REIONIZATION EPOCH WITH ALMA: [C ii] EMISSION IN zÂâ^1⁄4Â7 GALAXIES. Astrophysical Journal Letters, 2016, 829, L11.	8.3	128
149	The Redshift Evolution of Earlyâ€Type Galaxies in COSMOS: Do Massive Earlyâ€Type Galaxies Form by Dry Mergers?. Astrophysical Journal, Supplement Series, 2007, 172, 494-510.	7.7	127
150	CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip. Astrophysical Journal, Supplement Series, 2017, 229, 32.	7.7	127
151	An Overdensity of Galaxies at $z=5.9+0.2$ in the Hubble Ultra Deep Field Confirmed Using the ACS Grism. Astrophysical Journal, 2005, 626, 666-679.	4.5	125
152	A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 Î⅓m SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROL OF MERGERS IN GALAXY EVOLUTION. Astrophysical Journal, 2010, 721, 98-123.	.E 4.5	125
153	ARE COMPTON-THICK AGNs THE MISSING LINK BETWEEN MERGERS AND BLACK HOLE GROWTH?. Astrophysical Journal, 2015, 814, 104.	4.5	125
154	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A1.	5.1	125
155	THE EXTENDED <i>CHANDRA</i> DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK. Astrophysical Journal, Supplement Series, 2010, 191, 124-142.	7.7	123
156	THE RELATIVE ABUNDANCE OF COMPACT AND NORMAL MASSIVE EARLY-TYPE GALAXIES AND ITS EVOLUTION FROM REDSHIFT < i>z < /i> 2 TO THE PRESENT. Astrophysical Journal, 2011, 743, 96.	4.5	123
157	EVOLUTION OF THE SIZES OF GALAXIES OVER 7 & lt; <i>>z</i> & lt; 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 777, 155.	4.5	122
158	The redshift and mass dependence on the formation of the Hubble sequence at z $\&$ gt; 1 from CANDELS/UDS. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1185-1201.	4.4	121
159	TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE. Astronomical Journal, 2014, 148, 13.	4.7	121
160	The Stability of the Pointâ€Spread Function of the Advanced Camera for Surveys on the <i>Hubble Space Telescope</i> and Implications for Weak Gravitational Lensing. Astrophysical Journal, Supplement Series, 2007, 172, 203-218.	7.7	119
161	COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD. Astrophysical Journal, 2009, 696, 24-39.	4.5	119
162	GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING. Astrophysical Journal, 2011, 742, 125.	4.5	118

#	Article	IF	CITATIONS
163	ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT <i>2 < i>â²¼ 3-4: LOOKING FOR ANALOGS OF â€∞STELLAR RE-IONIZERSâ€. Astrophysical Journal, 2012, 751, 70.</i>	4.5	117
164	CANDELS/GOODS-S, CDFS, AND ECDFS: PHOTOMETRIC REDSHIFTS FOR NORMAL AND X-RAY-DETECTED GALAXIES. Astrophysical Journal, 2014, 796, 60.	4.5	117
165	ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES. Astrophysical Journal, 2011, 733, 60.	4.5	116
166	The dominant role of mergers in the size evolution of massive early-type galaxies since <i>z</i> \hat{A} - \hat{A} 1. Astronomy and Astrophysics, 2012, 548, A7.	5.1	116
167	CONSTRAINING THE ASSEMBLY OF NORMAL AND COMPACT PASSIVELY EVOLVING GALAXIES FROM REDSHIFT <i>z < /i> = 3 TO THE PRESENT WITH CANDELS. Astrophysical Journal, 2013, 775, 106.</i>	4.5	115
168	THE MUSIC OF CLASH: PREDICTIONS ON THE CONCENTRATION-MASS RELATION. Astrophysical Journal, 2014, 797, 34.	4.5	115
169	Observational Constraints on the Merger History of Galaxies since zÂâ‰^Â6: Probabilistic Galaxy Pair Counts in the CANDELS Fields. Astrophysical Journal, 2019, 876, 110.	4.5	114
170	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A8.	5.1	113
171	CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261. Astrophysical Journal, 2012, 757, 22.	4.5	112
172	The CANDELS/SHARDS Multiwavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates. Astrophysical Journal, Supplement Series, 2019, 243, 22.	7.7	111
173	The evolving slope of the stellar mass function at 0.6 \hat{a} % \hat{A} <i>>z</i> < 4.5 from deep WFC3 data. Astronomy and Astrophysics, 2012, 538, A33.	5.1	110
174	High-redshift AGN in the Chandra Deep Fields: the obscured fraction and space density of the sub-L* population. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2378-2406.	4.4	110
175	The Effects of Environment on Morphological Evolution at 0 < <i>z</i> < 1.2 in the COSM Survey. Astrophysical Journal, Supplement Series, 2007, 172, 284-294.	OS 7.7	109
176	A submillimetre galaxy at $\langle i \rangle z \langle i \rangle = 4.76$ in the LABOCA survey of the Extended $\langle i \rangle$ Chandra Deep Field $\langle i \rangle$ -South. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1905-1914.	4.4	108
177	CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS. Astrophysical Journal, Supplement Series, 2015, 221, 11.	7.7	106
178	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT <i>z</i> â^1/4 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS. Astrophysical Journal, Supplement Series, 2015, 220, 12.	7.7	106
179	A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS. Astrophysical Journal, 2015, 808, 101.	4.5	106
180	Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 [*] . Astrophysical Journal, 2017, 847, 134.	4.5	106

#	Article	IF	CITATIONS
181	AEGIS: Host Galaxy Morphologies of X-Ray-selected and Infrared-selected Active Galactic Nuclei at 0.2 ≠z < 1.2. Astrophysical Journal, 2007, 660, L19-L22.	4.5	105
182	CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 136.	4.5	105
183	THE DENSITY FIELD OF THE 10k zCOSMOS GALAXIES. Astrophysical Journal, 2010, 708, 505-533.	4.5	104
184	ZFOURGE/CANDELS: ON THE EVOLUTION OF < i>M < /i>* GALAXY PROGENITORS FROM < i>z < /i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	4.5	104
185	AN OPTICAL GROUP CATALOG TO <i>z</i> = 1 FROM THE zCOSMOS 10 k SAMPLE. Astrophysical Journal, 2009, 697, 1842-1860.	4.5	103
186	THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 780, 1.	4.5	103
187	GRAPES, Grism Spectroscopy of the Hubble Ultra Deep Field: Description and Data Reduction. Astrophysical Journal, Supplement Series, 2004, 154, 501-508.	7.7	102
188	First Catalog of Strong Lens Candidates in the COSMOS Field. Astrophysical Journal, Supplement Series, 2008, 176, 19-38.	7.7	101
189	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	4.5	101
190	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	4.5	101
191	High-redshift elliptical galaxies: are they (all) really compact?. Monthly Notices of the Royal Astronomical Society, 2010, 401, 933-940.	4.4	100
192	SECULAR EVOLUTION AND A NON-EVOLVING BLACK-HOLE-TO-GALAXY MASS RATIO IN THE LAST 7 Gyr. Astrophysical Journal Letters, 2011, 741, L11.	8.3	100
193	Host galaxy morphologies of X-ray selected AGN: assessing the significance of different black hole fuelling mechanisms to the accretion density of the Universe at <i>z</i> 1 2. Monthly Notices of the Royal Astronomical Society, 2009, 397, 623-633.	4.4	99
194	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 79.	4.5	99
195	The ALPINE–ALMA [C ii]ÂSurvey: Multiwavelength Ancillary Data and Basic Physical Measurements. Astrophysical Journal, Supplement Series, 2020, 247, 61.	7.7	99
196	Photometric Redshifts for Galaxies in the GOODS Southern Field. Astrophysical Journal, 2004, 600, L167-L170.	4.5	98
197	The Cosmic Evolution Survey (COSMOS): The Morphological Content and Environmental Dependence of the Galaxy Colorâ€Magnitude Relation at <i>z</i> â ¹ /4 0.7. Astrophysical Journal, Supplement Series, 2007, 172, 270-283.	7.7	98
198	CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT <i>z</i> å^1/4 6-8. Astrophysical Journal, 2014, 792, 76.	4.5	98

#	Article	IF	CITATIONS
199	THE DEPENDENCE OF GALACTIC OUTFLOWS ON THE PROPERTIES AND ORIENTATION OF zCOSMOS GALAXIES AT <i>z</i> 214 1. Astrophysical Journal, 2014, 794, 130.	4.5	98
200	CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7â^4431 (Abell S1063) and prospects for cosmography. Astronomy and Astrophysics, 2016, 587, A80.	5.1	98
201	BREAKING THE CURVE WITH CANDELS: A BAYESIAN APPROACH TO REVEAL THE NON-UNIVERSALITY OF THE DUST-ATTENUATION LAW AT HIGH REDSHIFT. Astrophysical Journal, 2016, 827, 20.	4.5	98
202	The VIMOS Ultra-Deep Survey (VUDS): fast increase in the fraction of strong Lyman- $\langle i \rangle \hat{l} \pm \langle i \rangle$ emitters from $\langle i \rangle z \langle i \rangle = 2$ to $\langle i \rangle z \langle i \rangle = 6$. Astronomy and Astrophysics, 2015, 573, A24.	5.1	98
203	THE NATURE OF EXTREME EMISSION LINE GALAXIES AT <i>z</i> = 1-2: KINEMATICS AND METALLICITIES FROM NEAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2014, 791, 17.	4.5	97
204	Host galaxies of luminous $\langle i \rangle z \langle i \rangle \hat{A} \hat{a}^1 / \hat{A} \hat{O}$.6 quasars: major mergers are not prevalent at the highest AGN luminosities. Monthly Notices of the Royal Astronomical Society, 2017, 466, 812-830.	4.4	96
205	A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions. Astronomical Journal, 2017, 153, 234.	4.7	96
206	Lyl± Emitters at Redshift 5.7 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 523-544.	7.7	96
207	Deconstructing the galaxy stellar mass function with UKIDSS and CANDELS: the impact of colour, structure and environment. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2-24.	4.4	95
208	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS COSMOS SURVEY FIELD. Astrophysical Journal, Supplement Series, 2017, 228, 7.	7.7	95
209	The Evolution of the Number Density of Large Disk Galaxies in COSMOS. Astrophysical Journal, Supplement Series, 2007, 172, 434-455.	7.7	93
210	The VANDELS ESO public spectroscopic survey: Observations and first data release. Astronomy and Astrophysics, 2018, 616, A174.	5.1	93
211	PKS 2250—41 and the role of jet-cloud interactions in powerful radio galaxies. Monthly Notices of the Royal Astronomical Society, 1999, 307, 24-40.	4.4	91
212	Prevalence of Xâ€Ray Variability in the Chandra Deep Field–South. Astrophysical Journal, 2004, 611, 93-106.	4.5	91
213	THE VLA-COSMOS PERSPECTIVE ON THE INFRARED-RADIO RELATION. I. NEW CONSTRAINTS ON SELECTION BIASES AND THE NON-EVOLUTION OF THE INFRARED/RADIO PROPERTIES OF STAR-FORMING AND ACTIVE GALACTIC NUCLEUS GALAXIES AT INTERMEDIATE AND HIGH REDSHIFT. Astrophysical Journal, Supplement Series. 2010. 186. 341-377.	7.7	91
214	HIGH-RESOLUTION SPECTROSCOPY OF A YOUNG, LOW-METALLICITY OPTICALLY THIN L = $0.02L^*$ STAR-FORMING GALAXY AT z = 3.12^* . Astrophysical Journal Letters, 2016, 821, L27.	8.3	91
215	Morphologies and Spectral Energy Distributions of Extremely Red Galaxies in the GOODS-South Field. Astrophysical Journal, 2004, 600, L131-L134.	4.5	89
216	The <i>XMMâ€Newton</i> Wideâ€Field Survey in the COSMOS Field. IV. Xâ€Ray Spectral Properties of Active Galactic Nuclei. Astrophysical Journal, Supplement Series, 2007, 172, 368-382.	7.7	89

#	Article	IF	CITATIONS
217	THE ENVIRONMENTS OF ACTIVE GALACTIC NUCLEI WITHIN THE zCOSMOS DENSITY FIELD. Astrophysical Journal, 2009, 695, 171-182.	4.5	89
218	The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep <i>K</i> -band number counts. Astronomy and Astrophysics, 2014, 570, A11.	5.1	89
219	THE zCOSMOS 20k GROUP CATALOG. Astrophysical Journal, 2012, 753, 121.	4.5	88
220	The Mass Relations between Supermassive Black Holes and Their Host Galaxies at 1Â<Âz < 2 with HST-WFC3. Astrophysical Journal, 2020, 888, 37.	4.5	87
221	The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years. Astrophysical Journal, 2021, 909, 165.	4.5	87
222	The zCOSMOS survey. The dependence of clustering on luminosity and stellar mass at \$z=0.2\$–1. Astronomy and Astrophysics, 2009, 505, 463-482.	5.1	87
223	DETAILED SHAPE AND EVOLUTIONARY BEHAVIOR OF THE X-RAY LUMINOSITY FUNCTION OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 804, 104.	4.5	86
224	The relationship between galaxy and dark matter halo size from $z\hat{A}\hat{a}^1/4\hat{A}$ 3 to the present. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2714-2736.	4.4	86
225	The ALPINE-ALMA [C II] survey. Astronomy and Astrophysics, 2020, 643, A3.	5.1	86
226	The ALPINE–ALMA [C ii] Survey: Size of Individual Star-forming Galaxies at zÂ=Â4–6 and Their Extended Halo Structure. Astrophysical Journal, 2020, 900, 1.	4.5	86
227	The UDF05 Followâ€up of the Hubble Ultra Deep Field. I. The Faintâ€End Slope of the Lyman Break Galaxy Population at <i>>z</i> \$a^1/4 5. Astrophysical Journal, 2007, 671, 1212-1226.	4.5	85
228	The blue UV slopes of <i>z</i> Â~Â 4 Lyman break galaxies: implications for the corrected star formation rate density. Astronomy and Astrophysics, 2012, 540, A39.	5.1	85
229	A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT <i>z</i> â^1/4 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE. Astrophysical Journal Letters, 2015, 812, L23.	8.3	84
230	The Lyman continuum escape fraction of galaxies at $\langle i \rangle z \langle i \rangle = 3.3$ in the VUDS-LBC/COSMOS field. Astronomy and Astrophysics, 2016, 585, A48.	5.1	84
231	DO THE MOST MASSIVE BLACK HOLES AT zÂ=Â2 GROW VIA MAJOR MERGERS?. Astrophysical Journal, 2016, 830, 156.	4.5	84
232	A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES. Astrophysical Journal, 2010, 724, 425-447.	4.5	83
233	Peering through the Dust: Evidence for a Supermassive Black Hole at the Nucleus of Centaurus A from VLT Infrared Spectroscopy. Astrophysical Journal, 2001, 549, 915-937.	4.5	82
234	THE MORPHOLOGY OF PASSIVELY EVOLVING GALAXIES AT <i>z</i> â ¹ / ₄ 2 FROM <i>HUBBLE SPACE TELESCOPE</i> /WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal Letters, 2010, 714, L79-L83.	8.3	82

#	Article	IF	Citations
235	CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH â°1/4800 SPECTRA OF MEMBER GALAXIES. Astrophysical Journal, Supplement Series, 2016, 224, 33.	7.7	82
236	The size-luminosity relation at <i>z</i> $\hat{a} \in \infty$ = $\hat{a} \in \infty$ 7 in CANDELS and its implication on reionization. Astronomy and Astrophysics, 2012, 547, A51.	5.1	82
237	A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 νm SELECTED GALAXIES IN THE COSMOS FIELD. I. SPECTRAL ENERGY DISTRIBUTIONS AND LUMINOSITIES. Astrophysical Journal, 2010, 709, 572-596.	4.5	81
238	The Hubble Space Telescope GOODS NICMOS Survey: overview and the evolution of massive galaxies at 1.5< z< 3. Monthly Notices of the Royal Astronomical Society, 2011, 413, 80-100.	4.4	81
239	Nonparametric Star Formation History Reconstruction with Gaussian Processes. I. Counting Major Episodes of Star Formation. Astrophysical Journal, 2019, 879, 116.	4.5	81
240	THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. II. CONSTRAINTS ON REIONIZATION FROM <i>Z</i> -DROPOUT GALAXIES. Astrophysical Journal, 2009, 690, 1350-1357.	4. 5	80
241	Analogues of primeval galaxies two billion years after the Big Bang. Nature Astronomy, 2017, 1, .	10.1	80
242	First Data Release of the COSMOS Lyl± Mapping and Tomography Observations: 3D Lyl± Forest Tomography at 2.05Â<ÂzÂ<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	7.7	80
243	Constraints on the star-formation rate of $\langle i \rangle z \langle j \rangle \sim 3$ LBGs with measured metallicity in the CANDELS GOODS-South field. Astronomy and Astrophysics, 2014, 566, A19.	5.1	80
244	CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES. Astrophysical Journal, 2013, 777, 43.	4.5	79
245	The VANDELS ESO public spectroscopic survey. Monthly Notices of the Royal Astronomical Society, 0, ,	4.4	79
246	Demographics of Star-forming Galaxies since zÂâ^1⁄4Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	4.5	79
247	The zCOSMOS redshift survey: how group environment alters global downsizing trends. Astronomy and Astrophysics, 2010, 509, A40.	5.1	78
248	AEGIS: DEMOGRAPHICS OF X-RAY AND OPTICALLY SELECTED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 728, 38.	4. 5	78
249	PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT <i>>z</i> > ≳ 7 USING <i>HUBBLE SPACE TELESCOPE</i> /i> PURE PARALLEL OBSERVATIONS. Astrophysical Journal Letters, 2011, 728, L22.	8.3	78
250	zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z $\hat{a}^{-1}/4$ 0.7. Monthly Notices of the Royal Astronomical Society, 2014, 438, 717-738.	4.4	78
251	Lyman continuum escape fraction of faint galaxies at $\langle i \rangle z \langle i \rangle \sim 3.3$ in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC. Astronomy and Astrophysics, 2017, 602, A18.	5.1	78
252	On the evolution of the velocity-mass-size relations of disc-dominated galaxies over the past 10 billion years. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	77

#	Article	IF	CITATIONS
253	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	5.1	77
254	Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS. Astronomy and Astrophysics, 2011, 535, A80.	5.1	76
255	THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE <i>CHANDRA </i> Astrophysical Journal, 2011, 741, 91.	4.5	76
256	<i>>SPITZER</i> 70 AND 160 μm OBSERVATIONS OF THE COSMOS FIELD. Astronomical Journal, 2009, 138, 1261-1270.	4.7	75
257	The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to <i>z</i> _{spec} ~ 6 in CANDELS. Astronomy and Astrophysics, 2017, 600, A110.	5.1	75
258	Unveiling the Active Nucleus of Centaurus A. Astrophysical Journal, 2000, 528, 276-291.	4.5	74
259	MOIRCS DEEP SURVEY. VI. NEAR-INFRARED SPECTROSCOPY OF (i) K (i) -SELECTED STAR-FORMING GALAXIES AT (i) $\hat{a}^{-1}/4$ 2. Astrophysical Journal, 2010, 718, 112-132.	4.5	74
260	Evidence for a correlation between the sizes of quiescent galaxies and local environment to $z\hat{A}\hat{a}^1/4$ 2. Monthly Notices of the Royal Astronomical Society, 2013, 435, 207-221.	4.4	74
261	The cosmic growth of the active black hole population at 1 <z 2015,="" 2085-2111.<="" 447,="" <2="" and="" astronomical="" in="" monthly="" notices="" of="" royal="" sdss.="" society,="" td="" the="" vvds="" zcosmos,=""><td>4.4</td><td>74</td></z>	4.4	74
262	Mass assembly and morphological transformations since <i>>z</i> > $\hat{a}^{1}/4$ 3 from CANDELS. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4495-4516.	4.4	73
263	Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate. Astrophysical Journal, 2017, 842, 72.	4.5	73
264	On the Stellar Populations of Galaxies at $z = 9\hat{a} \in 11$: The Growth of Metals and Stellar Mass at Early Times. Astrophysical Journal, 2022, 927, 170.	4.5	73
265	STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO <i>z</i> = 2.5 IN CANDELS. Astrophysical Journal, 2013, 773, 149.	4.5	72
266	CANDELS: Elevated Black Hole Growth in the Progenitors of Compact Quiescent Galaxies at zÂâ^1/4Â2. Astrophysical Journal, 2017, 846, 112.	4.5	72
267	MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. Astronomy and Astrophysics, 2017, 599, A28.	5.1	72
268	The progeny of a cosmic titan: a massive multi-component proto-supercluster in formation at <i>z</i> = 2.45 in VUDS. Astronomy and Astrophysics, 2018, 619, A49.	5.1	72
269	Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5Ââ‰ÂzÂ<Â3. Astrophysical Journal, 2018, 853, 108.	4.5	71
270	HEAVILY OBSCURED AGN IN STAR-FORMING GALAXIES AT <i>z</i> å% f 2. Astrophysical Journal, 2009, 706, 535-552.	4.5	70

#	Article	lF	CITATIONS
271	THE BUILDUP OF THE HUBBLE SEQUENCE IN THE COSMOS FIELD. Astrophysical Journal Letters, 2010, 714, L47-L51.	8.3	70
272	UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS. Astrophysical Journal, 2010, 720, 1708-1716.	4.5	70
273	COLOR AND STELLAR POPULATION GRADIENTS IN PASSIVELY EVOLVING GALAXIES AT <i>z</i> from <i>HST</i> /WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal, 2011, 735, 18.	4.5	70
274	LYÎ \pm FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT <i>z</i> <pre>/i> > 2. Astrophysical Journal Letters, 2014, 795, L12.</pre>	8.3	70
275	Galaxy Zoo: CANDELS barred discs and bar fractionsã~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 3466-3474.	4.4	70
276	KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT <i>>z</i> *) a 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES. Astrophysical Journal, 2014, 795, 145.	4.5	70
277	Non-parametric analysis of the rest-frame UV sizes and morphological disturbance amongst <i>L</i> _* galaxies at 4 < <i>z</i> < 8. Monthly Notices of the Royal Astronomical Society, 2016, 457, 440-464.	4.4	70
278	Galaxy Zoo: quantitative visual morphological classifications for 48Â000 galaxies from CANDELS. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4420-4447.	4.4	70
279	Spot the difference. Astronomy and Astrophysics, 2013, 558, A61.	5.1	69
280	MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. Astronomy and Astrophysics, 2015, 574, A11.	5.1	69
281	THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM Hβ AND FUV. Astrophysical Journal, 2016, 833, 37.	4.5	69
282	Linking black hole growth with host galaxies: the accretion–stellar mass relation and its cosmic evolution. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1887-1911.	4.4	69
283	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A4.	5.1	69
284	The VLA-COSMOS Survey. I. Radio Identifications from the Pilot Project. Astronomical Journal, 2004, 128, 1974-1989.	4.7	68
285	ULTRAVIOLET MORPHOLOGY AND UNOBSCURED UV STAR FORMATION RATES OF CLASH BRIGHTEST CLUSTER GALAXIES. Astrophysical Journal, 2015, 805, 177.	4.5	68
286	CANDELSz7: a large spectroscopic survey of CANDELS galaxies in the reionization epoch. Astronomy and Astrophysics, 2018, 619, A147.	5.1	68
287	A Search for H-Dropout Lyman Break Galaxies at z â^¼ 12–16. Astrophysical Journal, 2022, 929, 1.	4.5	68
288	SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE <i>XMM </i> -COSMOS SAMPLE. Astrophysical Journal, 2012, 759, 6.	4.5	67

#	Article	IF	CITATIONS
289	HUBBLE TARANTULA TREASURY PROJECT. III. PHOTOMETRIC CATALOG AND RESULTING CONSTRAINTS ON THE PROGRESSION OF STAR FORMATION IN THE 30ÂDORADUS REGION*. Astrophysical Journal, Supplement Series, 2016, 222, 11.	7.7	67
290	Identification of Type Ia Supernovae at Redshift 1.3 and Beyond with the Advanced Camera for Surveys on the Hubble Space Telescope. Astrophysical Journal, 2004, 600, L163-L166.	4.5	66
291	The zCOSMOS survey: the role of the environment in the evolution of the luminosity function of different galaxy types. Astronomy and Astrophysics, 2009, 508, 1217-1234.	5.1	66
292	THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914. Astrophysical Journal, 2013, 768, 166.	4. 5	66
293	Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr. Astronomy and Astrophysics, 2016, 589, A35.	5.1	66
294	UVUDF: ULTRAVIOLET IMAGING OF THE HUBBLE ULTRA DEEP FIELD WITH WIDE-FIELD CAMERA 3. Astronomical Journal, 2013, 146, 159.	4.7	65
295	EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3. Astrophysical Journal Letters, 2016, 820, L1.	8.3	65
296	Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0Â<ÂzÂ<Â3. Astrophysical Journal, 2017, 838, 6.	4.5	65
297	Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy–galaxy pairs from zÂ=Â3 to zÂâ^1⁄4Â0. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1549-1573.	4.4	65
298	Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at zÂâ^1/4Â4.5. Astrophysical Journal, 2018, 856, 121.	4. 5	65
299	VLT/FORS2 view at $\langle i \rangle z \langle i \rangle \sim 6$: Lyman- $\langle i \rangle \hat{l} \pm \langle i \rangle$ emitter fraction and galaxy physical properties at the edge of the epoch of cosmic reionization. Astronomy and Astrophysics, 2017, 608, A123.	5.1	65
300	A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES. Astrophysical Journal Letters, 2012, 744, L22.	8.3	64
301	CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT <i>>z</i> 2. Astrophysical Journal, 2013, 774, 47.	4.5	64
302	The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion. Monthly Notices of the Royal Astronomical Society, 2016, 463, 348-374.	4.4	64
303	A Possible New Population of Sources with Extreme X-Ray/Optical Ratios. Astrophysical Journal, 2004, 600, L123-L126.	4.5	63
304	Designing future dark energy space missions. Astronomy and Astrophysics, 2009, 504, 359-371.	5.1	63
305	THE 10k zCOSMOS: MORPHOLOGICAL TRANSFORMATION OF GALAXIES IN THE GROUP ENVIRONMENT SINCE $\langle i \rangle z \langle i \rangle \hat{a}^{-1}/41$. Astrophysical Journal, 2010, 718, 86-104.	4.5	63
306	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH <i>HUBBLE</i> (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND <i>HST</i> /WFC3/ACS IMAGING. Astrophysical Journal, 2011, 742, 117.	4.5	63

#	Article	IF	CITATIONS
307	Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 565, A126.	5.1	63
308	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2054-2084.	4.4	63
309	[ITAL]Hubble Space Telescope[/ITAL] STIS Observations of the Kinematics of Emission-Line Nebulae in Three Compact Steep-Spectrum Radio Sources. Astronomical Journal, 2002, 123, 2333-2351.	4.7	62
310	THE <i>CHANDRA</i> SURVEY OF THE COSMOS FIELD. II. SOURCE DETECTION AND PHOTOMETRY. Astrophysical Journal, Supplement Series, 2009, 185, 586-601.	7.7	62
311	A BRIGHTEST CLUSTER GALAXY WITH AN EXTREMELY LARGE FLAT CORE. Astrophysical Journal, 2012, 756, 159.	4.5	62
312	Dust properties of Lyman-break galaxies at <i>>z</i> ~ 3. Astronomy and Astrophysics, 2016, 587, A122.	5.1	62
313	Stars in the Hubble Ultra Deep Field. Astrophysical Journal, 2005, 622, 319-332.	4.5	61
314	The Cosmic Evolution Survey (COSMOS): A Largeâ€Scale Structure at <i>z</i> = 0.73 and the Relation of Galaxy Morphologies to Local Environment. Astrophysical Journal, Supplement Series, 2007, 172, 254-269.	of 7.7	61
315	LATE-STAGE GALAXY MERGERS IN COSMOS TO z â^1/4 1. Astronomical Journal, 2014, 148, 137.	4.7	61
316	Strong lensing models of eight CLASH clusters from extensive spectroscopy: Accurate total mass reconstructions in the cores. Astronomy and Astrophysics, 2019, 632, A36.	5.1	61
317	The bulge–disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1001-1033.	4.4	60
318	The FMOS-COSMOS Survey of Star-forming Galaxies at zÂâ^1/4Â1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2019, 241, 10.	7.7	60
319	CANDELS OBSERVATIONS OF THE ENVIRONMENTAL DEPENDENCE OF THE COLOR-MASS-MORPHOLOGY RELATION AT <i>z</i> = 1.6. Astrophysical Journal, 2013, 770, 58.	4.5	59
320	Bars in early- and late-type discs in COSMOS. Monthly Notices of the Royal Astronomical Society, 2010, 409, 346-354.	4.4	58
321	CLASH: NEW MULTIPLE IMAGES CONSTRAINING THE INNER MASS PROFILE OF MACS J1206.2–0847. Astrophysical Journal, 2012, 749, 97.	4.5	58
322	CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT $\langle i \rangle z \langle i \rangle = 1.62$. Astrophysical Journal, 2013, 773, 154.	4. 5	58
323	The host galaxies of X-ray selected active galactic nuclei to $\langle i \rangle z \langle i \rangle = 2.5$: Structure, star formation, and their relationships from CANDELS and $\langle i \rangle$ Herschel $\langle i \rangle$ /PACS. Astronomy and Astrophysics, 2015, 573, A85.	5.1	58
324	X-Ray Properties of Lyman Break Galaxies in the Great Observatories Origins Deep Survey. Astronomical Journal, 2005, 129, 1-8.	4.7	57

#	Article	IF	Citations
325	The supermassive black hole in Centaurus A: a benchmark for gas kinematical measurements. Astronomy and Astrophysics, 2006, 448, 921-953.	5.1	57
326	The colour distribution of galaxies at redshift five. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3714-3725.	4.4	57
327	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	7.7	57
328	INFRARED COLOR SELECTION OF MASSIVE GALAXIES AT zÂ>Â3. Astrophysical Journal, 2016, 816, 84.	4.5	57
329	A Census of the Bright z = 8.5–11 Universe with the Hubble and Spitzer Space Telescopes in the CANDELS Fields. Astrophysical Journal, 2022, 928, 52.	4.5	57
330	The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to $\langle i \rangle z < i \rangle \hat{A} - \hat{A}1$. Astronomy and Astrophysics, 2010, 524, A2.	5.1	56
331	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 649, A152.	5.1	56
332	A critical analysis of the UV luminosity function at redshift \hat{A} -7 from deep WFC3 data. Astronomy and Astrophysics, 2011, 532, A33.	5.1	56
333	The Space Density of High-Redshift QSOs in the Great Observatories Origins Deep Survey. Astrophysical Journal, 2004, 600, L119-L122.	4.5	55
334	The [O iii] emission line luminosity function of optically selected type-2 AGN from zCOSMOS\$^{m,}\$. Astronomy and Astrophysics, 2010, 510, A56.	5.1	55
335	HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. Astrophysical Journal Letters, 2010, 724, L59-L63.	8.3	55
336	THE NATURE OF EXTREMELY RED <i>H</i> – [4.5] > 4 GALAXIES REVEALED WITH SEDS AND CANDELS. Astrophysical Journal Letters, 2012, 750, L20.	8.3	55
337	QUENCHING STAR FORMATION AT INTERMEDIATE REDSHIFTS: DOWNSIZING OF THE MASS FLUX DENSITY IN THE GREEN VALLEY. Astrophysical Journal, 2012, 759, 67.	4.5	55
338	The VIMOS Ultra-Deep Survey: Emerging from the dark, a massive proto-cluster at $\langle i \rangle z \langle i \rangle \sim 4.57$. Astronomy and Astrophysics, 2018, 615, A77.	5.1	55
339	X-UDS: The <i>Chandra</i> Legacy Survey of the UKIDSS Ultra Deep Survey Field. Astrophysical Journal, Supplement Series, 2018, 236, 48.	7.7	55
340	The ALPINE-ALMA [C†II] survey. Astronomy and Astrophysics, 2020, 643, A5.	5.1	55
341	Simulating the Cosmos: The Fraction of Merging Galaxies at High Redshift. Astrophysical Journal, Supplement Series, 2007, 172, 329-340.	7.7	54
342	OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS. Astrophysical Journal, 2009, 700, 49-55.	4.5	54

#	Article	IF	CITATIONS
343	K+a galaxies in the zCOSMOS survey. Astronomy and Astrophysics, 2010, 509, A42.	5.1	54
344	The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2011, 534, A110.	5.1	54
345	AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2015, 814, 95.	4.5	54
346	Size evolution of star-forming galaxies with 2 < <i>z</i> < 4.5 in the VIMOS Ultra-Deep Survey. Astronomy and Astrophysics, 2016, 593, A22.	5.1	54
347	A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT <i>>z</i> >â^1/4 2: A MIX OF NUCLEAR ACTIVITY AN LOW-METALLICITY STAR FORMATION. Astrophysical Journal, 2011, 743, 144.	ND 4.5	53
348	<i>CHANDRA</i> HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE. Astrophysical Journal, 2012, 752, 49.	4.5	53
349	FIRST OBSERVATIONAL SUPPORT FOR OVERLAPPING REIONIZED BUBBLES GENERATED BY A GALAXY OVERDENSITY. Astrophysical Journal Letters, 2016, 818, L3.	8.3	53
350	Hubble Space TelescopeSTIS Farâ€Ultraviolet Observations of the Central Nebulae in the Cooling ore Clusters A1795 and A2597. Astrophysical Journal, 2004, 612, 131-151.	4.5	52
351	The properties of (sub-)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-South. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2012-2042.	4.4	52
352	X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration. Astrophysical Journal, Supplement Series, 2017, 232, 8.	7.7	52
353	Evidence for Merger-driven Growth in Luminous, High-z, Obscured AGNs in the CANDELS/COSMOS Field. Astrophysical Journal, 2018, 853, 63.	4.5	52
354	Optical and X-Ray Identification of Faint Radio Sources in the GOODS CDF-S Advanced Camera for Surveys Field. Astronomical Journal, 2006, 131, 1216-1230.	4.7	51
355	A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. Astronomy and Astrophysics, 2009, 497, 743-753.	5.1	51
356	THE ADVANCED CAMERA FOR SURVEYS GENERAL CATALOG: STRUCTURAL PARAMETERS FOR APPROXIMATELY HALF A MILLION GALAXIES. Astrophysical Journal, Supplement Series, 2012, 200, 9.	7.7	51
357	New image statistics for detecting disturbed galaxy morphologies at high redshift. Monthly Notices of the Royal Astronomical Society, 2013, 434, 282-295.	4.4	51
358	Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 & t 2 & amp; lt; z & amp; lt; 5. Monthly Notices of the Royal Astronomical Society, 2020, 496, 695-707.	4.4	51
359	A water-vapour giga-maser in the active galaxy TXFS2226 – 184. Nature, 1995, 378, 697-699.	27.8	50
360	The Angular Correlations of Galaxies in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 314-319.	7.7	50

#	Article	IF	CITATIONS
361	CLASH-VLT: The stellar mass function and stellar mass density profile of the $\langle i \rangle z \langle j \rangle = 0.44$ cluster of galaxies MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 571, A80.	5.1	50
362	FIRST RESULTS FROM THE FAINT INFRARED GRISM SURVEY (FIGS): FIRST SIMULTANEOUS DETECTION OF Lyα EMISSION AND LYMAN BREAK FROM A GALAXY AT zÂ=Â7.51. Astrophysical Journal Letters, 2016, 827, L14.	8.3	50
363	The Lyman Continuum Escape Fraction of Emission Line-selected zÂâ^¼Â2.5 Galaxies Is Less Than 15%. Astrophysical Journal Letters, 2017, 841, L27.	8.3	50
364	The Intrinsic Characteristics of Galaxies on the SFR–M _{â^—} Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence. Astrophysical Journal, 2018, 853, 131.	4.5	50
365	THE MORPHOLOGIES AND ALIGNMENTS OF GAS, MASS, AND THE CENTRAL GALAXIES OF CLASH CLUSTERS OF GALAXIES. Astrophysical Journal, 2016, 819, 36.	4.5	50
366	The Chandradeep field South/GOODS survey. Astronomy and Astrophysics, 2005, 437, 805-821.	5.1	49
367	THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2009, 706, 797-809.	4.5	49
368	CLASH: z â^1/4 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7â^'4431. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1417-1434.	4.4	49
369	The Chandra COSMOS Legacy Survey: Compton thick AGN at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2578-2592.	4.4	49
370	A catalog of polychromatic bulge-disc decompositions of $\hat{a}^{1}/417.600$ galaxies in CANDELS. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5410-5426.	4.4	49
371	H [CSC]i[/CSC] Absorption toward the Nucleus of the Radio Galaxy PKS 2322â^123 in A2597. Astrophysical Journal, 1999, 512, L27-L30.	4.5	48
372	PHOTOMETRIC PROPERTIES OF Lyα EMITTERS AT <i>z</i> â%^ 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD. Astrophysical Journal, 2009, 696, 546-561.	4.5	48
373	THE COLORS OF CENTRAL AND SATELLITE GALAXIES IN zCOSMOS OUT TO <i>z</i> f 0.8 AND IMPLICATIONS FOR QUENCHING. Astrophysical Journal, 2013, 769, 24.	4.5	48
374	PROTO-GROUPS AT 1.8 < <i>z</i> < 3 IN THE zCOSMOS-DEEP SAMPLE. Astrophysical Journal, 2013, 765, 109.	4. 5	48
375	X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO <i>z</i> = 3: RESULTS FROM CANDELS/CDF-S. Astrophysical Journal, 2013, 763, 59.	4.5	48
376	Physical Characterization of an Unlensed, Dusty Star-forming Galaxy at zÂ=Â5.85. Astrophysical Journal, 2019, 887, 55.	4.5	48
377	The [O <scp>ii</scp>] λ3727 Luminosity Function and Star Formation Rate at <i>z</i> ꀉâ‰^ 1.2 in the CO Square Degree Field and the Subaru Deep Field. Astrophysical Journal, Supplement Series, 2007, 172, 456-467.	OSMOS 2 7.7	48
378	A NEW EXTENSIVE CATALOG OF OPTICALLY VARIABLE ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS AND A NEW STATISTICAL APPROACH TO VARIABILITY SELECTION. Astrophysical Journal, 2010, 723, 737-754.	4.5	47

#	Article	IF	CITATIONS
379	The ages, masses and star formation rates of spectroscopically confirmed z $\hat{a}^{1/4}$ 6 galaxies in CANDELS. Monthly Notices of the Royal Astronomical Society, 2013, 429, 302-322.	4.4	47
380	HUBBLE TARANTULA TREASURY PROJECT: UNRAVELING TARANTULA'S WEB. I. OBSERVATIONAL OVERVIEW AND FIRST RESULTS. Astronomical Journal, 2013, 146, 53.	4.7	47
381	The tumultuous formation of the Hubble sequence at z > 1 examined with HST/Wide-Field Camera-3 observations of the Hubble Ultra Deep Field. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2770-2788.	4.4	46
382	The VANDELS ESO public spectroscopic survey. Astronomy and Astrophysics, 2021, 647, A150.	5.1	46
383	CLASH-VLT: spectroscopic confirmation of a $<$ i>>z $<$ /i>>= 6.11 quintuply lensed galaxy in the Frontier Fields cluster RXC J2248.7-4431. Astronomy and Astrophysics, 2013, 559, L9.	5.1	46
384	3C 236: Radio Source, Interrupted?. Astronomical Journal, 2001, 121, 1915-1926.	4.7	45
385	Ultraviolet Hubble Space Telescope Snapshot Survey of 3CR Radio Source Counterparts at Low Redshift. Astrophysical Journal, Supplement Series, 2002, 139, 411-438.	7.7	45
386	PROBING THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT $\langle i \rangle z \langle i \rangle$ $\hat{a}^1/4$ 4 IN THE COSMOS FIELD. Astrophysical Journal Letters, 2011, 728, L25.	8.3	45
387	THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS. Astrophysical Journal, 2014, 786, 9.	4.5	45
388	CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations. Astronomy and Astrophysics, 2015, 579, A4.	5.1	45
389	New constraints on the average escape fraction of Lyman continuum radiation in <i>z</i> ~ 4 galaxies from the VIMOS Ultra Deep Survey (VUDS). Astronomy and Astrophysics, 2017, 601, A73.	5.1	45
390	Major Mergers Are Not the Dominant Trigger for High-accretion AGNs at <i>z</i> \hat{a}^4 2. Astrophysical Journal, 2019, 882, 141.	4.5	45
391	EARLY-TYPE GALAXIES IN THE PEARS SURVEY: PROBING THE STELLAR POPULATIONS AT MODERATE REDSHIFT. Astrophysical Journal, 2009, 706, 158-169.	4.5	44
392	A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN <i>HUBBLE SPACE TELESCOPE</i> INFRARED OBSERVATIONS FROM CANDELS. Astrophysical Journal, 2012, 746, 5.	4.5	44
393	Obscured AGN at <i>>z</i> > ~ 1 from the zCOSMOS-Bright Survey. Astronomy and Astrophysics, 2013, 556 A29.	5.1	44
394	A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 794, 68.	4.5	44
395	Ultraviolet luminosity density of the universe during the epoch of reionization. Nature Communications, 2015, 6, 7945.	12.8	44
396	KINEMATIC DOWNSIZING AT z â^¼Â2. Astrophysical Journal, 2016, 830, 14.	4.5	44

#	Article	IF	Citations
397	The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters*. Astrophysical Journal, 2018, 860, 104.	4.5	44
398	The properties of He II <i>î»</i> 1640 emitters at <i>z</i> â^¼â€" 2.5–5 from the VANDELS survey. Astrophysics, 2020, 636, A47.	opomy and	¹ 44
399	Physical properties of <i>z</i> > 4 submillimeter galaxies in the COSMOS field. Astronomy and Astrophysics, 2015, 576, A127.	5.1	43
400	A WFC3 GRISM EMISSION LINE REDSHIFT CATALOG IN THE GOODS-SOUTH FIELD. Astronomical Journal, 2015, 149, 178.	4.7	43
401	CLASH: DISCOVERY OF A BRIGHT <i>>z</i> > 6.2 DWARF GALAXY QUADRUPLY LENSED BY MACS J0329.6-021 Astrophysical Journal Letters, 2012, 747, L9.	¹ 8.3	42
402	The decomposed bulge and disc size–mass relations of massive galaxies at 1Â<ÂzÂ<Â3 in CANDELS. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1660-1673.	4.4	42
403	Tracing the accretion history of supermassive black holes through X-ray variability: results from the ChandraDeep Field-South. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4398-4411.	4.4	42
404	A Strong-Lens Survey in AEGIS: The Influence of Large-Scale Structure. Astrophysical Journal, 2007, 660, L31-L34.	4.5	41
405	SPECTROSCOPY OF LUMINOUS <i>z</i> > 7 GALAXY CANDIDATES AND SOURCES OF CONTAMINATION IN <i>z</i> > 7 GALAXY SEARCHES. Astrophysical Journal, 2011, 730, 68.	4.5	41
406	NEAR-INFRARED IMAGING OF A $\langle i \rangle z \langle i \rangle = 6.42$ QUASAR HOST GALAXY WITH THE $\langle i \rangle$ HUBBLE SPACE TELESCOPE $\langle i \rangle$ WIDE FIELD CAMERA 3. Astrophysical Journal Letters, 2012, 756, L38.	8.3	41
407	CONFIRMATION OF SMALL DYNAMICAL AND STELLAR MASSES FOR EXTREME EMISSION LINE GALAXIES AT <i>z</i> â ¹ / ₄ 2. Astrophysical Journal Letters, 2013, 778, L22.	8.3	41
408	The inferred evolution of the cold gas properties of CANDELS galaxies at 0.5 < <i>z</i> < 3.0. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2258-2276.	4.4	41
409	The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2017, 465, 619-640.	4.4	41
410	Unveiling the Dynamical State of Massive Clusters through the ICL Fraction. Astrophysical Journal, 2018, 857, 79.	4.5	41
411	RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM. Astrophysical Journal, 2010, 714, 218-228.	4.5	40
412	DISCOVERY OF LYMAN BREAK GALAXIES AT <i>z</i> â^¼ 7 FROM THE zFourGE SURVEY. Astrophysical Journal, 2013, 768, 56.	4.5	40
413	HST/STIS low dispersion spectroscopy of three Compact Steep Spectrum sources. Astronomy and Astrophysics, 2005, 436, 493-501.	5.1	40
414	CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT <i>z</i> 242. Astrophysical Journal, 2012, 752, 134.	4.5	39

#	Article	IF	CITATIONS
415	THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM. Astrophysical Journal, 2012, 749, 53.	4.5	39
416	EVOLUTION OF THE FRACTION OF CLUMPY GALAXIES AT 0.2 < <i>z</i> < 1.0 IN THE COSMOS FIELD. Astrophysical Journal, 2014, 786, 15.	4.5	39
417	The VIMOS Ultra Deep Survey: Ly <i>î±</i> emission and stellar populations of star-forming galaxies at 2 < <i>z</i> â€‱< %lt; %Lt;â€%Lt;	5.1	39
418	CAUGHT IN THE ACT: GAS AND STELLAR VELOCITY DISPERSIONS IN A FAST QUENCHING COMPACT STAR-FORMING GALAXY AT zÂâ^¼Â1.7. Astrophysical Journal, 2016, 820, 120.	4.5	39
419	CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2017, 470, 95-113.	4.4	39
420	The ALPINE–ALMA [C II] survey. Astronomy and Astrophysics, 2021, 646, A76.	5.1	39
421	The Extended Blue Continuum and Line Emission around the Central Radio Galaxy in Abell 2597. Astrophysical Journal, 1999, 525, 621-637.	4.5	39
422	Evolution of blue E/S0 galaxies from <i>z < /i> \sim 1: merger remnants or disk-rebuilding galaxies?. Astronomy and Astrophysics, 2010, 515, A3.</i>	5.1	38
423	LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT <i>z</i> assembly NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, 2012, 761, 177.	4.5	38
424	PROPERTIES OF SUBMILLIMETER GALAXIES IN THE CANDELS GOODS-SOUTH FIELD. Astrophysical Journal, 2014, 785, 111.	4.5	38
425	Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 < <i>z</i> < 2 via principal component analysis. Monthly Notices of the Royal Astronomical Society, 2016, 458, 963-987.	4.4	38
426	Analysis of the <i>>SFR</i> â€" <i>M</i> ^{â^—} plane at <i>z</i> < 3: single fitting versus multi-Gaussian decomposition. Astronomy and Astrophysics, 2018, 609, A82.	5.1	38
427	The Molecular Gas Content and Fuel Efficiency of Starbursts at zÂâ^1/4Â1.6 with ALMA. Astrophysical Journal, 2018, 867, 92.	4.5	38
428	The Nearest GHz Peaked-Spectrum Radio Galaxy, PKS 1718-649. Astronomical Journal, 1997, 113, 2025.	4.7	38
429	CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields. Astronomy and Astrophysics, 2014, 562, A86.	5.1	37
430	Physical Properties of Sub-galactic Clumps at 0.5 ≠Z ≠1.5 in the UVUDF. Astrophysical Journal, 2017, 837, 6.	4.5	37
431	FIGSâ€"Faint Infrared Grism Survey: Description and Data Reduction. Astrophysical Journal, 2017, 846, 84.	4.5	37
432	The VANDELS survey: the role of ISM and galaxy physical properties in the escape of Ly <i>\hat{l}±</i> emission in <i>z</i> $\hat{a}^1/4$ 3.5 star-forming galaxies. Astronomy and Astrophysics, 2019, 631, A19.	5.1	37

#	Article	IF	Citations
433	THE DEPENDENCE OF STAR FORMATION ACTIVITY ON STELLAR MASS SURFACE DENSITY AND SERSIC INDEX IN zCOSMOS GALAXIES AT 0.5 < <i>>z</i> < 0.9 COMPARED WITH SDSS GALAXIES AT 0.04 < <i>z</i> < 0.08. Astrophysical Journal, 2009, 694, 1099-1114.	4.5	36
434	ASCA Observations of the Gigahertz-peaked Spectrum Radio Galaxies 1345+125 and 2352+495. Astronomical Journal, 2000, 119, 478-485.	4.7	36
435	A journey from the outskirts to the cores of groups. Astronomy and Astrophysics, 2012, 539, A55.	5.1	35
436	REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ≲ <i>z</i> and Passively Evolving Galaxies. Astrophysical Journal, 2012, 749, 149.	RMING 4.5	35
437	FeÂK emission from active galaxies in the COSMOS field. Astronomy and Astrophysics, 2012, 537, A86.	5.1	35
438	Pathways to quiescence: SHARDS view on the star formation histories of massive quiescent galaxies at 1.0Â< <i>z</i> Â<Â1.5. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3743-3768.	4.4	35
439	Optical Line Emission from zÂâ^1/4Â6.8 Sources with Deep Constraints on Lyl± Visibility. Astrophysical Journal, 2017, 839, 73.	4.5	35
440	UVI colour gradients of 0.4Â<ÂzÂ<Â1.4 star-forming main-sequence galaxies in CANDELS: dust extinction and star formation profiles. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4063-4082.	4.4	35
441	Obscured AGN at 1.5 < <i>>z</i> >< 3.0 from the zCOSMOS-deep Survey. Astronomy and Astrophysics, 2019, 626, A9.	5.1	35
442	UV and Ly <i>\hat{l}±</i> luminosity functions of galaxies and star formation rate density at the end of HI reionization from the VIMOS UltraDeep Survey (VUDS). Astronomy and Astrophysics, 2020, 634, A97.	5.1	35
443	<i>HUBBLE SPACE TELESCOPE</i> /i>/ADVANCED CAMERA FOR SURVEYS MORPHOLOGY OF Lyα EMITTERS AT REDSHIFT 5.7 IN THE COSMOS FIELD. Astrophysical Journal, 2009, 701, 915-944.	4.5	34
444	CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT < i>z < /i> $\hat{a}^{1/4}$ 5 IN THE COSMOS FIELD. Astrophysical Journal, 2012, 756, 160.	4.5	34
445	WEAK LENSING CALIBRATED < i>M < /i> - < i>T < /i> SCALING RELATION OF GALAXY GROUPS IN THE COSMOS FIELD. Astrophysical Journal, 2013, 778, 74.	4.5	34
446	ENVIRONMENTAL EFFECTS IN THE INTERACTION AND MERGING OF GALAXIES IN zCOSMOS. Astrophysical Journal, 2013, 762, 43.	4.5	34
447	The Structure and Star Formation History of Early†Type Galaxies in the Ultra Deep Field/GRAPES Survey. Astrophysical Journal, 2006, 636, 115-133.	4.5	33
448	SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal, 2009, 697, 942-949.	4.5	33
449	zCOSMOS 10k-bright spectroscopic sample. Astronomy and Astrophysics, 2010, 524, A67.	5.1	33
450	<i>HUBBLE SPACE TELESCOPE</i> IMAGING OF Lyα EMISSION AT <i>z</i> Å%^ 4.4. Astrophysical Journal, 2011, 735, 5.	4.5	33

#	Article	IF	CITATIONS
451	THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS. Astrophysical Journal, 2013, 776, 91.	4.5	33
452	EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCE < i> z < /i> = 2. Astrophysical Journal, 2015, 810, 90.	4.5	33
453	STAR-FORMING BLUE ETGS IN TWO NEWLY DISCOVERED GALAXY OVERDENSITIES IN THE HUDF AT <i>>z</i> >= 1.84 AND 1.9: UNVEILING THE PROGENITORS OF PASSIVE ETGS IN CLUSTER CORES. Astrophysical Journal, 2015, 804, 117.	4.5	33
454	UVUDF: UV Luminosity Functions at the Cosmic High Noon. Astrophysical Journal, 2017, 838, 29.	4.5	33
455	Characterization of star-forming dwarf galaxies at 0.1 $\%^2$ (i>2 6 of the mass-metallicity relation. Astronomy and Astrophysics, 2017, 601, A95.	5.1	33
456	The VANDELS survey: dust attenuation in star-forming galaxies at $z=3$ -4. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3218-3232.	4.4	33
457	Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies. Astrophysical Journal, 2007, 661, 70-77.	4.5	31
458	Redshifts of Emission-Line Objects in the Hubble Ultra Deep Field. Astronomical Journal, 2007, 134, 169-178.	4.7	31
459	EMISSION-LINE GALAXIES FROM THE PEARS HUBBLE ULTRA DEEP FIELD: A 2D DETECTION METHOD AND FIRST RESULTS. Astronomical Journal, 2008, 135, 1624-1635.	4.7	31
460	THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY AT $\langle i \rangle z \langle i \rangle = 4.6$. Astrophysical Journal Letters, 2011, 731, L27.	8.3	31
461	STELLAR POPULATIONS OF LYMAN BREAK GALAXIES AT <i>>z</i> i>â%f 1-3 IN THE <i>HST</i> /i>/WFC3 EARLY RELEASE SCIENCE OBSERVATIONS. Astrophysical Journal, 2013, 765, 88.	4.5	31
462	TO STACK OR NOT TO STACK: SPECTRAL ENERGY DISTRIBUTION PROPERTIES OF LyÎ \pm -EMITTING GALAXIES AT <i>z</i> = 2.1. Astrophysical Journal, 2014, 783, 26.	4.5	31
463	Detection of zÂâ^1⁄4Â2.3 Cosmic Voids from 3D Lyα Forest Tomography in the COSMOS Field. Astrophysical Journal, 2018, 861, 60.	4.5	31
464	Discovery of a zÂ=Â7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope Faint Infrared Grism Survey. Astrophysical Journal, 2018, 858, 94.	4.5	31
465	Radio continuum size evolution of star-forming galaxies over 0.35 < <i>z</i> < 2.25. Astronomy and Astrophysics, 2019, 625, A114.	5.1	31
466	EPISODIC STAR FORMATION COUPLED TO REIGNITION OF RADIO ACTIVITY IN 3C 236. Astrophysical Journal, 2010, 715, 172-185.	4.5	30
467	On the evolution of environmental and mass properties of strong lens galaxies in COSMOS. Astronomy and Astrophysics, 2011, 529, A72.	5.1	30
468	Evolution of clustering length, large-scale bias, and host halo mass at 2 < <i>z</i> < 5 in the VIMOS Ultra Deep Survey (VUDS). Astronomy and Astrophysics, 2015, 583, A128.	5.1	30

#	Article	IF	CITATIONS
469	AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7Â<ÂzÂ<Â4.6*. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4527-4540.	4.4	30
470	Hubble Space TelescopeImaging in theChandraDeep Field–South. III. Quantitative Morphology of the 1 Million SecondChandraCounterparts and Comparison with the Field Population. Astrophysical Journal, 2003, 595, 685-697.	4. 5	30
471	Investigating the Effect of Galaxy Interactions on the Enhancement of Active Galactic Nuclei at 0.5Â<ÂzÂ<Â3.0. Astrophysical Journal, 2020, 904, 107.	4.5	30
472	AEGIS: The Diversity of Bright Near-IR-selected Distant Red Galaxies. Astrophysical Journal, 2007, 660, L55-L58.	4.5	29
473	Spectral energy distributions of type 1 AGN in XMM-COSMOS – II. Shape evolution. Monthly Notices of the Royal Astronomical Society, 2013, 438, 1288-1304.	4.4	29
474	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂ≠0.7: A POWER LAW WITH INCREASING S TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SCATTER	29
475	The SFR–M _* Correlation Extends to Low Mass at High Redshift. Astrophysical Journal, 2018, 866, 120.	4.5	29
476	ENVIRONMENT OF MAMBO GALAXIES IN THE COSMOS FIELD. Astrophysical Journal Letters, 2010, 708, L36-L41.	8.3	28
477	KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES. Astrophysical Journal, 2014, 797, 108.	4.5	28
478	The VIMOS Ultra-Deep Survey: A major merger origin for the high fraction of galaxies at 2 < <i>z </i> < 6 with two bright clumps. Astronomy and Astrophysics, 2017, 608, A16.	5.1	28
479	The Properties and Redshift Evolution of Intermediate-Luminosity Off-Nuclear X-Ray Sources in the Chandra Deep Fields. Astronomical Journal, 2006, 131, 2394-2405.	4.7	27
480	ENVIRONMENTAL EFFECTS ON THE STAR FORMATION ACTIVITY IN GALAXIES AT <i>z</i> eli>aeli>field. Astrophysical Journal, 2009, 700, 971-976.	S _{4.5}	27
481	OBSCURED GOODS ACTIVE GALACTIC NUCLEI AND THEIR HOST GALAXIES AT <i>z</i> < 1.25: THE SLOW BLACK HOLE GROWTH PHASE. Astrophysical Journal, 2011, 734, 121.	4.5	27
482	Physical properties of <i>Herschel</i> selected galaxies in a semi-analytic galaxy formation model. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1539-1556.	4.4	27
483	Stellar masses of giant clumps in CANDELS and simulated galaxies using machine learning. Monthly Notices of the Royal Astronomical Society, 2020, 499, 814-835.	4.4	27
484	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2020, 643, A6.	5.1	27
485	Characterization of Two 2 mm detected Optically Obscured Dusty Star-forming Galaxies. Astrophysical Journal, 2022, 925, 23.	4.5	27
486	Stellar mass to halo mass relation from galaxy clustering in VUDS: a high star formation efficiency at $i \ge 2 / i \ge 3 \% f$ 3. Astronomy and Astrophysics, 2015, 576, L7.	5.1	26

#	Article	IF	Citations
487	Constraining the galaxy mass content in the core of A383 using velocity dispersion measurements for individual cluster members. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1224-1241.	4.4	26
488	CLASH-VLT: testing the nature of gravity with galaxy cluster mass profiles. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 023-023.	5.4	26
489	The extended epoch of galaxy formation: Age dating of ~3600 galaxies with 2 < <i>z </i> < 6.5 in the VIMOS Ultra-Deep Survey. Astronomy and Astrophysics, 2017, 602, A35.	5.1	26
490	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 653, A111.	5.1	26
491	The Dust and Molecular Gas in the Brightest Cluster Galaxy in MACS 1931.8-2635. Astrophysical Journal, 2019, 879, 103.	4.5	26
492	A LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTHâ€"SUBMILLIMETER PROPERTIES OF NEAR-INFRARED SELECTED GALAXIES. Astrophysical Journal, 2010, 719, 483-496.	4.5	25
493	THE STAR FORMATION RATE EFFICIENCY OF NEUTRAL ATOMIC-DOMINATED HYDROGEN GAS IN THE OUTSKIRTS OF STAR-FORMING GALAXIES FROM z â^1/4 1 TO z â^1/4 3. Astrophysical Journal, 2016, 825, 87.	4.5	25
494	A Duality in the Origin of Bulges and Spheroidal Galaxies. Astrophysical Journal, 2021, 913, 125.	4.5	25
495	A Redshiftzâ‰^ 5.4 Lyα Emitting Galaxy with Linear Morphology in the GRAPES/Hubble Ultra Deep Field. Astrophysical Journal, 2005, 621, 582-586.	4.5	24
496	Understanding the shape of the galaxy two-point correlation function at z $\hat{a}\% f$ 1 in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2010, 409, 867-872.	4.4	24
497	GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847. Astrophysical Journal, 2013, 774, 124.	4.5	24
498	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>z</i> < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	4.5	24
499	THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT <i>z</i> 1 /a 2. Astrophysical Journal, 2015, 800, 21.	4.5	24
500	Effect of the star formation histories on the <i>SFR </i> - <i>M </i> _{\hat{a} —} relation at <i>z </i> \hat{i} \hat{a} \hat{w} \hat{2}. Astronomy and Astrophysics, 2016, 593, A9.	5.1	24
501	MC ² : Subaru and Hubble Space Telescope Weak-lensing Analysis of the Double Radio Relic Galaxy Cluster PLCK G287.0+32.9. Astrophysical Journal, 2017, 851, 46.	4.5	24
502	Hubble Space Telescopelmaging in the Chandra Deep Field–South. I. Multiple Active Galactic Nucleus Populations. Astrophysical Journal, 2001, 560, 127-138.	4.5	23
503	The spectral energy distributions, host galaxies and environments of variability-selected active galactic nuclei in GOODS-South. Monthly Notices of the Royal Astronomical Society, 2012, 426, 360-376.	4.4	23
504	A quasar–galaxy mixing diagram: quasar spectral energy distribution shapes in the optical to near-infrared. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3104-3121.	4.4	23

#	Article	IF	CITATIONS
505	DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT $\langle i \rangle z \langle i \rangle = 1.53$. Astrophysical Journal Letters, 2013, 777, L17.	8.3	23
506	CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES. Astrophysical Journal Letters, 2014, 783, L11.	8.3	23
507	Star formation and quenching among the most massive galaxies at $z\hat{A}\hat{a}^1/4\hat{A}1.7$. Monthly Notices of the Royal Astronomical Society, 2015, 450, 763-786.	4.4	23
508	THE STELLAR INITIAL MASS FUNCTION AT 0.9 < <i>>z</i> < 1.5. Astrophysical Journal Letters, 2015, 798, L4.	8.3	23
509	THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS. Astrophysical Journal, 2016, 817, 85.	4.5	23
510	CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies. Astrophysical Journal Letters, 2017, 841, L22.	8.3	23
511	VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5 < <i>z</i> < 5.5 and the colour selection of high-redshift galaxies. Astronomy and Astrophysics, 2017, 597, A88.	5.1	23
512	Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters. Astrophysical Journal, 2017, 848, 37.	4.5	23
513	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2017, 604, A132.	5.1	23
514	The VIMOS Ultra Deep Survey. Astronomy and Astrophysics, 2018, 612, A42.	5.1	23
515	The VANDELS survey: a strong correlation between Ly α equivalent width and stellar metallicity at 3 ≠z ≠5. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1501-1510.	4.4	23
516	A STUDY OF THE RELATION BETWEEN STAR FORMATION AND MOLECULAR CLUMPS ON SUBPARSEC SCALES IN 30 DORADUS. Astrophysical Journal, 2016, 831, 32.	4.5	23
517	A Significant Excess in Major Merger Rate for AGNs with the Highest Eddington Ratios at z < 0.2. Astrophysical Journal, 2020, 904, 79.	4.5	23
518	The ALPINE-ALMA [C II] Survey: [C II] 158 μm Emission Line Luminosity Functions at zÂâ^¼Â4–6. Astrophysica Journal, 2020, 905, 147.	al 4.5	23
519	Hubble Space Telescopelmaging in the Chandra Deep Field–South. II. WFPC2 Observations of an Xâ€Ray Flux–limited Sample from the 1 Million Second Chandra Catalog. Astrophysical Journal, 2002, 567, 657-671.	4.5	22
520	Lower Mass Black Holes in the Great Observatories Origins Deep Survey? Off-nuclear X-Ray Sources. Astrophysical Journal, 2004, 600, L147-L150.	4.5	22
521	The Stellar Content of the COSMOS Field as Derived from Morphological and SEDâ€based Star/Galaxy Separation. Astrophysical Journal, Supplement Series, 2007, 172, 545-559.	7.7	22
522	ON THE CONTRIBUTION OF LARGE-SCALE STRUCTURE TO STRONG GRAVITATIONAL LENSING. Astrophysical Journal, 2009, 695, 1233-1243.	4.5	22

#	Article	IF	CITATIONS
523	OBSCURED STAR FORMATION AND ENVIRONMENT IN THE COSMOS FIELD. Astrophysical Journal, 2010, 721, 607-614.	4.5	22
524	Hubble Space Telescope Wide Field Camera 3 Observations of Escaping Lyman Continuum Radiation from Galaxies and Weak AGN at Redshifts zÂâ^¼Â2.3–4.1. Astrophysical Journal, 2018, 853, 191.	4.5	22
525	Properties and environment of radio-emitting galaxies in the VLA-zCOSMOS survey. Astronomy and Astrophysics, 2010, 511, A1.	5.1	21
526	THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. III. THE LUMINOSITY FUNCTION AT < i> z < /i> $\hat{a}^{1}/4$ 6. Astrophysical Journal, 2011, 738, 123.	4.5	21
527	Evidence for two modes of black hole accretion in massive galaxies at $z\hat{a}^{1}/42$. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3630-3644.	4.4	21
528	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2017, 608, A138.	5.1	21
529	The ALPINE-ALMA [C <scp>ii</scp>] survey: a triple merger at <i>z</i> â^¼ 4.56. Monthly Notices of the Roya Astronomical Society: Letters, 2020, 491, L18-L23.	al 3.3	21
530	Clues to Active Galactic Nucleus Growth from Optically Variable Objects in the Hubble Ultra Deep Field. Astrophysical Journal, 2006, 639, 731-739.	4.5	20
531	The VIMOS Ultra Deep Survey: The reversal of the star-formation rate â^' density relation at 2 < <i>z</i> < 5. Astronomy and Astrophysics, 2022, 662, A33.	5.1	20
532	THE UV CONTINUUM OF $\langle i \rangle z \langle i \rangle$ > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD. Astrophysical Journal Letters, 2014, 793, L5.	8.3	19
533	CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS. Astrophysical Journal, 2016, 832, 104.	4.5	19
534	The VIMOS Ultra Deep Survey. Astronomy and Astrophysics, 2017, 606, A19.	5.1	19
535	Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. Astrophysical Journal, 2018, 861, 71.	4.5	19
536	High-velocity outflows in massive post-starburst galaxies at $z \& gt$; 1. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1139-1151.	4.4	19
537	COSMOSÂ5921+0638: characterization and analysis of a new strong gravitationally lensed AGN. Astronomy and Astrophysics, 2009, 507, 35-46.	5.1	19
538	A LINK TO THE PAST: USING MARKOV CHAIN MONTE CARLO FITTING TO CONSTRAIN FUNDAMENTAL PARAMETERS OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2012, 748, 122.	4.5	19
539	Limits to Rest-frame Ultraviolet Emission from Far-infrared-luminous z \hat{A} â‰ $f\hat{A}$ 6 Quasar Hosts. Astrophysical Journal, 2020, 900, 21.	4.5	19
540	THE NONLINEAR BIASING OF THE zCOSMOS GALAXIES UP TO (i) z (/i) $\hat{a}^{-1/4}$ 1 FROM THE 10k SAMPLE. Astrophysical Journal, 2011, 731, 102.	4.5	18

#	Article	IF	CITATIONS
541	NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES AT <i>z</i> â^1/4 2 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 793, 101.	4.5	18
542	The composite nature of Dust-Obscured Galaxies (DOGs) at z Ââ 1 /4Â2â \in 3 in the COSMOS field â \in 1. A far-infrared view. Monthly Notices of the Royal Astronomical Society, 2015, 452, 470-485.	4.4	18
543	MORPHOLOGICAL PROPERTIES OF Lyα EMITTERS AT REDSHIFT 4.86 IN THE COSMOS FIELD: CLUMPY STAR FORMATION OR MERGER?*. Astrophysical Journal, 2016, 819, 25.	4.5	18
544	Precise strong lensing mass profile of the CLASH galaxy cluster MACSÂ2129. Monthly Notices of the Royal Astronomical Society, 0, , stx015.	4.4	18
545	From Naked Spheroids to Disky Galaxies: How Do Massive Disk Galaxies Shape Their Morphology?. Astrophysical Journal, 2022, 929, 121.	4.5	18
546	ALMA Lensing Cluster Survey: ALMA-Herschel Joint Study of Lensed Dusty Star-forming Galaxies across z â‰f 0.5 – 6. Astrophysical Journal, 2022, 932, 77.	4.5	18
547	Science with an 8-meter to 16-meter optical/UV space telescope. Proceedings of SPIE, 2008, , .	0.8	17
548	THE IMPACT OF JWST BROADBAND FILTER CHOICE ON PHOTOMETRIC REDSHIFT ESTIMATION. Astrophysical Journal, Supplement Series, 2016, 227, 19.	7.7	17
549	Separating galaxies from the cluster dark matter halo in Abell 611. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4589-4601.	4.4	17
550	EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT zÂ=Â4. Astrophysical Journal, 2017, 834, 81.	4.5	17
551	The ALPINEⰠALMA [C  < scp>ii < /scp>] Survey: on the nature of an extremely obscured serendipitous galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 496, 875-887.	4.4	17
552	The ALPINE-ALMA [CII] survey. Astronomy and Astrophysics, 2021, 653, A84.	5.1	17
553	Radio observations of the Chandra Deep Field South. Astronomy and Astrophysics, 2007, 466, 119-126.	5.1	17
554	The Lyman Continuum Escape Fraction of Galaxies and AGN in the GOODS Fields. Astrophysical Journal, 2020, 897, 41.	4.5	17
555	The Mass–Metallicity Relation at z â^¼ 1–2 and Its Dependence on the Star Formation Rate. Astrophysical Journal, 2021, 919, 143.	4.5	17
556	Dynamics and Excitation of Radio Galaxy Emissionâ€Line Regions. I. PKS 2356â°'61. Astrophysical Journal, 1998, 497, 662-680.	4. 5	16
557	AEGIS: A Panchromatic Study of IRAC-selected Extremely Red Objects with Confirmed Spectroscopic Redshifts. Astrophysical Journal, 2007, 660, L59-L63.	4.5	16
558	DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < <i>z</i> <<2.712, 48.	4.5	16

#	Article	IF	CITATIONS
559	Non-redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS. Proceedings of SPIE, 2012, , .	0.8	16
560	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT $\langle i \rangle z \langle i \rangle = 1.62$. Astrophysical Journal Letters, 2014, 789, L31.	8.3	16
561	SHARDS: A GLOBAL VIEW OF THE STAR FORMATION ACTIVITY AT <i>z</i> â^¼ 0.84 and <i>z</i> â^¼ 1.23. Astrophysical Journal, 2015, 812, 155.	4.5	16
562	JWST/MIRI Simulated Imaging: Insights into Obscured Star Formation and AGNs for Distant Galaxies in Deep Surveys. Astrophysical Journal, 2021, 908, 144.	4.5	16
563	Selection of Massive Evolved Galaxies at 3 ≠z ≠4.5 in the CANDELS Fields. Astrophysical Journal, 2020, 897, 44.	4.5	16
564	Jet–Cloud Interactions in Compact Steep Spectrum Radio Sources. Publications of the Astronomical Society of Australia, 2003, 20, 88-93.	3.4	15
565	Morphology and Evolution of Emissionâ€Line Galaxies in the Hubble Ultra Deep Field. Astrophysical Journal, 2006, 636, 582-591.	4.5	15
566	The effects of an active galactic nucleus on host galaxy colour and morphology measurements. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	15
567	Ultraluminous X-ray sources out to $z \sim 0.3$ in the COSMOS field. Astronomy and Astrophysics, 2010, 514, A85.	5.1	15
568	SPECTROPOLARIMETRIC EVIDENCE FOR RADIATIVELY INEFFICIENT ACCRETION IN AN OPTICALLY DULL ACTIVE GALAXY. Astrophysical Journal, 2011, 732, 23.	4.5	15
569	X-Ray Groups of Galaxies at 0.5 1 in zCOSMOS: Increased AGN Activities in High Redshift Groups. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	15
570	MEASURING THE GEOMETRY OF THE UNIVERSE FROM WEAK GRAVITATIONAL LENSING BEHIND GALAXY GROUPS IN THEHSTCOSMOS SURVEY. Astrophysical Journal, 2012, 749, 127.	4.5	15
571	THE ROLE OF GALAXY INTERACTION IN ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION ACTIVITY ATzâ $\% f$ 1.2. Astrophysical Journal, 2012, 747, 42.	4.5	14
572	A LYMAN BREAK GALAXY IN THE EPOCH OF REIONIZATION FROM <i>HUBBLE SPACE TELESCOPE</i> SPECTROSCOPY. Astrophysical Journal, 2013, 773, 32.	4.5	14
573	Investigating the relationship between AGN activity and stellar mass in zCOSMOS galaxies at 0 < <i>z</i> â€‱< %lt; 1 using emission-line diagnostic diagrams. Astronomy and Astrophysics, 20	13 ^{5, 1} 556, A	11 ⁴
574	ACTIVE GALACTIC NUCLEUS AND QUASAR SCIENCE WITH APERTURE MASKING INTERFEROMETRY ON THE <i>JAMES WEBB SPACE TELESCOPE </i> Astrophysical Journal, 2014, 783, 73.	4.5	14
575	DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Ly <i>α</i> EQUIVALENT WIDTHS AT <i>z</i> â ¹ / ₄ 3. Astrophysical Journal Letters, 2015, 809, L7.	8.3	14
576	The structural properties of classical bulges and discs from z $\hat{a}^{1/4}$ 2. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4135-4154.	4.4	14

#	Article	IF	Citations
577	The VANDELS survey: Discovery of massive overdensities of galaxies at <i>z</i> â€,,> â€,, 2. Astronomy an Astrophysics, 2020, 640, A107.	nd 5.1	14
578	Extensive Lensing Survey of Optical and Near-infrared Dark Objects (El Sonido): HST H-faint Galaxies behind 101 Lensing Clusters. Astrophysical Journal, 2021, 922, 114.	4.5	14
579	Resolving the Shocks in Radio Galaxy Nebulae:Hubble Space Telescopeand Radio Imaging of 3C 171, 3C 277.3, and PKS 2250-41. Astronomical Journal, 2005, 130, 2513-2521.	4.7	13
580	CLASH: EXTENDING GALAXY STRONG LENSING TO SMALL PHYSICAL SCALES WITH DISTANT SOURCES HIGHLY MAGNIFIED BY GALAXY CLUSTER MEMBERS. Astrophysical Journal, 2014, 786, 11.	4.5	13
581	Molecular gas in AzTEC/C159: a star-forming disk galaxy 1.3 Gyr after the Big Bang. Astronomy and Astrophysics, 2018, 615, A25.	5.1	13
582	On the Transition of the Galaxy Quenching Mode at 0.5Â<ÂzÂ<Â1 in CANDELS. Astrophysical Journal, 2018, 860, 60.	4.5	13
583	Evolution of the Gas Mass Fraction of Progenitors to Today's Massive Galaxies: ALMA Observations in the CANDELS GOODS-S Field. Astrophysical Journal, 2019, 878, 83.	4.5	13
584	Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5580-5593.	4.4	13
585	Two fossil groups of galaxies at zâ‰^ 0.4 in the Cosmic Evolution Survey: accelerated stellar-mass build-up, different progenitors. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2927-2937.	4.4	12
586	The zCOSMOS-Bright survey: the clustering of early and late galaxy morphological types since $z\hat{a}\%f$ 1. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	12
587	A GROUP-GALAXY CROSS-CORRELATION FUNCTION ANALYSIS IN zCOSMOS. Astrophysical Journal, 2012, 755, 48.	4.5	12
588	A Very Large (Î, _E Â≳Â40″) Strong Gravitational Lens Selected with the Sunyaev–Zel'dovich PLCK G287.0+32.9 (zÂ=Â0.38). Astrophysical Journal Letters, 2017, 839, L11.	n Effect:	12
589	Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters. Astrophysical Journal, Supplement Series, 2017, 231, 3.	7.7	12
590	Studying the physical properties of tidal features $\hat{a} \in \mathbb{C}$ I. Extracting morphological substructure in CANDELS observations and VELA simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2643-2659.	4.4	12
591	Further support for a trio of mass-to-light deviations in Abell 370: free-form <scp>grale</scp> lens inversion using BUFFALO strong lensing data. Monthly Notices of the Royal Astronomical Society, 2021, 506, 6144-6158.	4.4	12
592	Pilot-WINGS: An extended MUSE view of the structure of Abell 370. Monthly Notices of the Royal Astronomical Society, 2022, 514, 497-517.	4.4	12
593	COSMOS2020: Ubiquitous AGN Activity of Massive Quiescent Galaxies at 0 < z < 5 Revealed by X-Ray and Radio Stacking. Astrophysical Journal, 2022, 929, 53.	4.5	12
594	THE OPTICAL SPECTRA OF <i>SPITZER </i> 24 ν m GALAXIES IN THE COSMIC EVOLUTION SURVEY FIELD. II. FAINT INFRARED SOURCES IN THE zCOSMOS-BRIGHT 10k CATALOG. Astrophysical Journal, 2009, 707, 1387-1403.	4.5	11

#	Article	IF	CITATIONS
595	SERENDIPITOUS DISCOVERY OF A MASSIVE cD GALAXY AT <i>z</i> = 1.096: IMPLICATIONS FOR THE EARLY FORMATION AND LATE EVOLUTION OF cD GALAXIES. Astrophysical Journal, 2013, 769, 147.	4.5	11
596	OPTICAL-FAINT, FAR-INFRARED-BRIGHT <i>HERSCHEL</i> SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT <i>z</i> > 1 AND THE EFFECT OF SOURCE BLENDING. Astrophysical Journal, Supplement Series, 2014, 213, 2.	7.7	11
597	THE QUASAR-LBG TWO-POINT ANGULAR CROSS-CORRELATION FUNCTION AT < i>z < /i> \hat{a}^4 4 IN THE COSMOS FIELD. Astrophysical Journal, 2015, 809, 138.	4.5	11
598	Variability-selected Low-luminosity Active Galactic Nuclei Candidates in the 7 Ms Chandra Deep Field-South. Astrophysical Journal, 2018, 868, 88.	4.5	11
599	A Two-dimensional Spectroscopic Study of Emission-line Galaxies in the Faint Infrared Grism Survey (FIGS). I. Detection Method and Catalog. Astrophysical Journal, 2018, 868, 61.	4.5	11
600	Concurrent Starbursts in Molecular Gas Disks within a Pair of Colliding Galaxies at z \hat{A} = \hat{A} 1.52. Astrophysical Journal, 2018, 868, 75.	4.5	11
601	Star-forming galaxies at low-redshift in the SHARDS survey. Astronomy and Astrophysics, 2019, 621, A52.	5.1	11
602	The size and pervasiveness of Ly α–UV spatial offsets in star-forming galaxies at <i>z</i> â^¼ 6. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3662-3681.	4.4	11
603	Discovery of a Star Formation Region in Abell 2052. Astronomical Journal, 2002, 123, 1357-1363.	4.7	11
604	Did galaxy assembly and supermassive black-hole growth go hand-in-hand? New Astronomy Reviews, 2006, 50, 821-828.	12.8	10
605	THE CLOWES-CAMPUSANO LARGE QUASAR GROUP SURVEY. I. <i>GALEX </i> SELECTED SAMPLE OF LYMAN BREAK GALAXIES AT <i>z < /i> ê ½ 1. Astrophysical Journal, 2009, 702, 506-522.</i>	4.5	10
606	IDENTIFYING DYNAMICALLY YOUNG GALAXY GROUPS VIA WIDE-ANGLE TAIL GALAXIES: A CASE STUDY IN THE COSMOS FIELD ATz= 0.53. Astrophysical Journal, 2010, 713, 484-490.	4.5	10
607	EVOLUTION IN THE DUST LANE FRACTION OF EDGE-ON SINCE $ x > 1$ $ x > 1$ $ x > 1$ 	4.5	10
608	The zCOSMOS redshift survey: evolution of the light in bulges and discs since <i>z</i> ~ 0.8. Astronomy and Astrophysics, 2014, 564, L12.	5.1	10
609	CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2015, 801, 12.	4.5	10
610	The ALMA Frontier Fields Survey. Astronomy and Astrophysics, 2020, 633, A160.	5.1	10
611	Extragalactic Ionized Hydrogen in the Fornax Cluster. Astrophysical Journal, 1995, 447, .	4.5	10
612	The ALPINE-ALMA [Câ€II] survey. Dust attenuation curves at <i>z</i> = 4.4â€"5.5. Astronomy and Astrophysics, 2022, 663, A50.	5.1	10

#	Article	IF	Citations
613	THE OPACITY OF GALACTIC DISKS AT <i>z</i> â^1/4 0.7. Astrophysical Journal Letters, 2010, 714, L113-L117.	8.3	9
614	PdBI COLD DUST IMAGING OF TWO EXTREMELY RED <i>H</i> i>– [4.5] > 4 GALAXIES DISCOVERED WITH SEDS AND CANDELS. Astrophysical Journal, 2014, 788, 126.	4.5	9
615	The projected gravitational potential of the galaxy cluster MACS J1206 derived from galaxy kinematics. Astronomy and Astrophysics, 2015, 584, A63.	5.1	9
616	Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5336-5355.	4.4	9
617	A closer look at the deep radio sky: Multi-component radio sources at 3 GHz VLA-COSMOS. Astronomy and Astrophysics, 2019, 627, A142.	5.1	9
618	The host galaxies of luminous type 2 AGNs at <i>>z</i> àâ ¹ / ₄ 0.3–0.4. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1829-1849.	4.4	9
619	The WFPC2 Archival Pure Parallels Project. Publications of the Astronomical Society of the Pacific, 2006, 118, 450-460.	3.1	8
620	STUDYING LARGE- AND SMALL-SCALE ENVIRONMENTS OF ULTRAVIOLET LUMINOUS GALAXIES. Astrophysical Journal, 2009, 699, 1307-1320.	4.5	8
621	The bimodality of the 10k zCOSMOS-bright galaxies up to <i>z</i> à€‰Â- 1: a new statistical and portable classification based on optical galaxy properties. Astronomy and Astrophysics, 2011, 535, A10.	5.1	8
622	Constraining the luminosity function of faint undetected i-dropout galaxiesa~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 3474-3484.	4.4	8
623	The role of major mergers in the size growth of intermediate-mass spheroids. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1861-1866.	4.4	8
624	THE REST-FRAME ULTRAVIOLET STRUCTURE OF 0.5 < <i>z</i> < 1.5 GALAXIES. Astrophysical Journal, 2014, 791, 18.	4.5	8
625	THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT <i>Z</i> \$a^1/4 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS. Astrophysical Journal, 2015, 803, 104.	4.5	8
626	Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1493-1503.	4.4	8
627	VLBA+GBT observations of the COSMOS field and radio source counts at 1.4 GHz. Astronomy and Astrophysics, 2018, 616, A128.	5.1	8
628	The Composite Nature of Dust-obscured Galaxies (DOGs) at zÂâ^¼Â2–3 in the COSMOS Field. II. The AGN Fraction. Astronomical Journal, 2019, 157, 233.	4.7	8
629	The intergalactic medium transmission towards z \hat{a} % 4 galaxies with VANDELS and the impact of dust attenuation. Astronomy and Astrophysics, 2020, 634, A110.	5.1	8
630	The Star Formation Rate–Radius Connection: Data and Implications for Wind Strength and Halo Concentration. Astrophysical Journal, 2020, 899, 93.	4.5	8

#	Article	IF	Citations
631	Differential attenuation in star-forming galaxies at 0.3 $\hat{a}^2 < i > 2 < i> \hat{a}^2 > 1.5$ in the SHARDS/CANDELS field. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2061-2083.	4.4	8
632	Xâ∈Ray Properties of B2 1028+313: A Quasar at the Center of the Abell Cluster A1030. Astrophysical Journal, 1999, 510, 90-103.	4.5	7
633	A Potential Galaxy Threshing System in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 511-517.	7.7	7
634	A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE <i>HUBBLE SPACE TELESCOPE</i> WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD. Astrophysical Journal, Supplement Series, 2012, 199, 4.	7.7	7
635	Extended X-ray emission from non-thermal sources in the COSMOS field: a detailed study of a large radio galaxy at <i>z</i> = 1.168. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2753-2763.	4.4	7
636	FIGS: spectral fitting constraints on the star formation history of massive galaxies since the cosmic noon. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1358-1376.	4.4	7
637	A Catalog of Emission-line Galaxies from the Faint Infrared Grism Survey: Studying Environmental Influence on Star Formation. Astrophysical Journal, 2020, 888, 79.	4.5	7
638	The ALPINE-ALMA [C <scp>ii</scp>]Âsurvey: Investigation of 10 galaxies at <i>z</i> â ¹ /4 4.5 with [O <scp>ii</scp>]Âline emission â ² ISM properties and [O <scp>ii</scp>]â′ Monthly Notices of the Royal Astronomical Society, 2022, 511, 1303-1316.	`'S #R arelat	zior 7.
639	Joint Survey Processing. I. Compact Oddballs in the COSMOS Field—Low-luminosity Quasars at z > 6?. Astrophysical Journal, 2022, 929, 66.	4.5	7
640	A mass threshold in the number density of passive galaxies at <i>z </i> ~ 2. Astronomy and Astrophysics, 2014, 571, A99.	5.1	6
641	EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT OBSERVED WITH (i> HUBBLE SPACE TELESCOPE (/i> WFC3: PERSPECTIVES ON RECENT STAR FORMATION. Astrophysical Journal, 2014, 796, 101.	4.5	6
642	The most massive, passive, and oldest galaxies at 0.5 < <i>z</i> < 2.1: Downsizing signature from galaxies selected from Mg _{UV} index. Astronomy and Astrophysics, 2019, 630, A145.	5.1	6
643	Constraints on Ultraviolet Absorption in the Intracluster Medium of Abell 1030. Astrophysical Journal, 1998, 508, 608-620.	4.5	6
644	Hubble Space TelescopeObservations of the Associated Absorptionâ€Line Systems in Q0122+0338. Astrophysical Journal, 2000, 531, 654-664.	4.5	6
645	Hubble Space TelescopeSTIS Spectroscopy of the Lyl± Emission Line in the Central Dominant Galaxies in A426, A1795, and A2597: Constraints on Clouds in the Intracluster Medium. Astrophysical Journal, 2005, 632, 122-136.	4.5	5
646	A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES. Astronomical Journal, 2015, 149, 159.	4.7	5
647	Superluminous Supernovae at High Redshift. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	5
648	Spectrophotometric Redshifts in the Faint Infrared Grism Survey: Finding Overdensities of Faint Galaxies. Astrophysical Journal, 2018, 856, 116.	4.5	5

#	Article	IF	Citations
649	Statistical Stellar Mass Corrections for High-z Galaxies Observed with JWST Broadband Filters Due to Template Degeneracies. Astrophysical Journal, Supplement Series, 2019, 243, 27.	7.7	5
650	Emission-line Metallicities from the Faint Infrared Grism Survey and VLT/MUSE. Astrophysical Journal, 2019, 874, 125.	4.5	5
651	Implications of Increased Central Mass Surface Densities for the Quenching of Low-mass Galaxies. Astrophysical Journal, 2021, 914, 7.	4.5	5
652	The <i>NuSTAR</i> extragalactic survey of the <i>James Webb Space Telescope</i> North Ecliptic Pole time-domain field. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5176-5195.	4.4	5
653	The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure. Astrophysical Journal, 2018, 854, 70.	4.5	4
654	Setting the scene for BUFFALO: a study of the matter distribution in the HFF galaxy cluster MACS J0416.1â°'2403 and its parallel field. Monthly Notices of the Royal Astronomical Society, 2020, 494, 349-362.	4.4	4
655	Less and more IGM-transmitted galaxies from <i>z</i> â^1/4 2.7 to <i>z</i> â^1/4 6 from VANDELS and VUDS. Astronomy and Astrophysics, 2021, 650, A63.	5.1	4
656	Space Telescopes in the Ultraviolet, Optical, and Infrared (UV/O/IR)., 2013,, 361-429.		4
657	A Strong-lensing Model for the WMDF JWST/GTO Very Rich Cluster A1489. Astrophysical Journal, 2020, 903, 137.	4.5	4
658	The Nature of Near-Ultraviolet-selected Objects in the Chandra Deep Field-South. Astrophysical Journal, 2004, 600, L151-L154.	4.5	3
659	Seeing-sorted Visible Multi-Object Spectrograph U-band Imaging of the GOODS-south Field*. Research Notes of the AAS, 2021, 5, 190.	0.7	3
660	Seeing-Sorted Large Binocular Camera U-band Imaging of the Extended Groth Strip. Research Notes of the AAS, 2022, 6, 63.	0.7	3
661	The ultra-deep 20 cm Australia telescope survey of the Chandra Deep Field South. New Astronomy Reviews, 2003, 47, 391-396.	12.8	2
662	HST/STIS Spectroscopy of CSS Sources: Kinematics and Ionisation of the Aligned Nebulae. Publications of the Astronomical Society of Australia, 2003, 20, 28-30.	3.4	2
663	The COSMOS 2-degree HST/ACS survey. New Astronomy Reviews, 2005, 49, 461-464.	12.8	2
664	Detection of a possible superluminous supernova in the Epoch of Reionization. Science Bulletin, 2017, 62, 675-678.	9.0	2
665	An extreme case of galaxy and cluster co-evolution at $\langle i \rangle z \langle i \rangle$ Â=Â0.7. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3663-3671.	4.4	2
666	Interactions between the Abell 2597 central radio source and dense gas in its host galaxy. New Astronomy Reviews, 2002, 46, 149-153.	12.8	1

#	Article	IF	CITATIONS
667	Shock ionization of line-emitting gas in the radio galaxy PKS 0349â^'27. New Astronomy Reviews, 2002, 46, 197-201.	12.8	1
668	The Future of Direct Supermassive Black Hole Mass Estimates. Publications of the Astronomical Society of the Pacific, 2009, 121, 1245-1256.	3.1	1
669	Oxford SWIFT integral field spectrograph and multiwavelength observations of the Eagle galaxy at z= 0.77. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2882-2890.	4.4	1
670	Quenching star formation at intermediate redshifts: downsizing of the mass flux density in the green valley. Proceedings of the International Astronomical Union, 2012, 8, 163-166.	0.0	1
671	Progress in search for highâ€redshift galaxies magnified by gravitational lensing. Astronomische Nachrichten, 2013, 334, 474-477.	1.2	1
672	Dynamical Models of Emission-Line Gas in Radio Galaxies. Symposium - International Astronomical Union, 1996, 175, 471-472.	0.1	0
673	Shock Excitation of Emission Lines in Radio Galaxies. Symposium - International Astronomical Union, 1996, 175, 473-474.	0.1	0
674	PKS2250-41 and the Role of Jet Cloud Interactions in Powerful Radio Galaxies. Astrophysics and Space Science, 1998, 263, 67-70.	1.4	0
675	Emission Line Properties of GPS/CSS Galaxies. Publications of the Astronomical Society of Australia, 2003, 20, 147-150.	3.4	0
676	Resolving the Hard X-Ray Background in the Chandra Deep Field South. Globular Clusters - Guides To Galaxies, 2003, , 573-579.	0.1	0
677	The Nature of UV-selected Galaxies in the Chandra Deep Field South. Symposium - International Astronomical Union, 2004, 217, 222-223.	0.1	0
678	HST/STIS Far-UV observations of the central nebulae in the cooling core cluster A 1795. Proceedings of the International Astronomical Union, 2004, 2004, 509-512.	0.0	0
679	Seeing the Sky throughHubble's Eye: The COSMOS SkyWalker. Publications of the Astronomical Society of the Pacific, 2006, 118, 1186-1189.	3.1	0
680	High-Redshift QSOs in the GOODS. Globular Clusters - Guides To Galaxies, 2006, , 145-150.	0.1	0
681	Populations of candidate black holes at redshift 7 or above. Proceedings of the International Astronomical Union, 2006, 2, 258-258.	0.0	0
682	A multiwavelength study of a sample of Texas Radio Survey steep spectrum sources. Proceedings of the International Astronomical Union, 2006, 2, 610-610.	0.0	0
683	Prototype development for a Hubble Legacy Archive. Proceedings of the International Astronomical Union, 2006, 2, 589-589.	0.0	О
684	COMMISSION 47: COSMOLOGY. Proceedings of the International Astronomical Union, 2011, 7, 260-267.	0.0	0

#	Article	lF	CITATIONS
685	The Morphologies of Massive Galaxies at $1< z<3$ in the CANDELS-UDS Field: Compact Bulges, and the Rise and Fall of Massive Disks. Proceedings of the International Astronomical Union, 2012, 8, 49-52.	0.0	O
686	Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field. Proceedings of the International Astronomical Union, 2015 , 11 , $28-28$.	0.0	0
687	Galaxies Unveiled: Rest-frame UV Clumps at 0.5 < z < 1.5. Proceedings of the International Astronomical Union, 2016, 11, 364-365.	0.0	O
688	Morphologies of low-redshift AGN host galaxies: what role dies AGN luminosity play?. , 2013, , .		0
689	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT $z=1.62$. Publications of the Korean Astronomical Society, 2015, 30, 389-392.	0.0	O
690	Enabling new science with MAST community contributed data collections. , 2018, , .		0