
Quanyu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558162/publications.pdf Version: 2024-02-01

ΟΠΥΝΚΗ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa. Science of the Total Environment, 2022, 817, 152988.	8.0	8
2	Adaptive Evolution Improves Algal Strains for Environmental Remediation. Trends in Biotechnology, 2021, 39, 112-115.	9.3	23
3	Growth Performance and Antioxidative Response of Chlorella pyrenoidesa, Dunaliella salina, and Anabaena cylindrica to Four Kinds of Ionic Liquids. Applied Biochemistry and Biotechnology, 2021, 193, 1945-1966.	2.9	8
4	Effects of three antibiotics on growth and antioxidant response of Chlorella pyrenoidosa and Anabaena cylindrica. Ecotoxicology and Environmental Safety, 2021, 211, 111954.	6.0	46
5	Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. Algal Research, 2021, 54, 102212.	4.6	22
6	Lutein extraction by imidazolium-based ionic liquid-water mixture from dried and fresh Chlorella sp Algal Research, 2021, 60, 102528.	4.6	13
7	Microalgae cultivation. Advances in Bioenergy, 2021, 6, 37-115.	1.3	1
8	Kinetic model for effects of simulated flue gas onto growth profiles of <i>Chlorella</i> sp. AE10 and <i>Chlorella</i> sp. Cv. Biotechnology and Applied Biochemistry, 2020, 67, 783-789.	3.1	7
9	Identification of active pathways of Chlorella protothecoides by elementary mode analysis integrated with fluxomic data. Algal Research, 2020, 45, 101767.	4.6	5
10	Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp Bioresource Technology, 2020, 298, 122562.	9.6	17
11	Strategies for enhancing eicosapentaenoic acid production: From fermentation to metabolic engineering. Algal Research, 2020, 51, 102038.	4.6	3
12	Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. Bioresource Technology, 2019, 291, 121783.	9.6	49
13	Application of chemicals for enhancing lipid production in microalgae-a short review. Bioresource Technology, 2019, 293, 122135.	9.6	32
14	Enhancing growth and lipid productivity in Dunaliella salina under high light intensity and nitrogen limited conditions. Bioresource Technology Reports, 2019, 7, 100211.	2.7	12
15	Current states and challenges of salt-affected soil remediation by cyanobacteria. Science of the Total Environment, 2019, 669, 258-272.	8.0	104
16	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	3.6	37
17	Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Science of the Total Environment, 2019, 650, 2931-2938.	8.0	78
18	Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 552-566.	2.4	84

Quanyu Zhao

#	Article	IF	CITATIONS
19	Enhancing Carbohydrate Productivity of Chlorella sp. AE10 in Semi-continuous Cultivation and Unraveling the Mechanism by Flow Cytometry. Applied Biochemistry and Biotechnology, 2018, 185, 419-433.	2.9	29
20	Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria. Algal Research, 2018, 31, 31-39.	4.6	46
21	Exploration of phenol tolerance mechanism through antioxidative responses of an evolved strain, Chlorella sp. L5. Journal of Applied Phycology, 2018, 30, 2379-2385.	2.8	10
22	Enhanced roles of biochar and organic fertilizer in microalgae for soil carbon sink. Biodegradation, 2018, 29, 313-321.	3.0	7
23	Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30â€⁻g/L salt. Bioresource Technology, 2018, 250, 495-504.	9.6	60
24	Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 2018, 11, 272.	6.2	281
25	Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresource Technology, 2018, 267, 438-444.	9.6	93
26	Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation. Applied Biochemistry and Biotechnology, 2017, 183, 1062-1075.	2.9	53
27	Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels, 2017, 10, 75.	6.2	104
28	Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain. Bioresource Technology, 2017, 227, 266-272.	9.6	52
29	High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation. Bioresource Technology, 2017, 227, 317-323.	9.6	18
30	Characterization of Co-Cultivation of Cyanobacteria on Growth, Productions of Polysaccharides and Extracellular Proteins, Nitrogenase Activity, and Photosynthetic Activity. Applied Biochemistry and Biotechnology, 2017, 181, 340-349.	2.9	21
31	Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresource Technology, 2016, 211, 1-5.	9.6	74
32	Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresource Technology, 2016, 205, 264-268.	9.6	96
33	Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresource Technology, 2015, 185, 269-275.	9.6	115
34	Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresource Technology, 2013, 147, 499-507.	9.6	50
35	Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis. Journal of Bioscience and Bioengineering, 2010, 110, 254-261.	2.2	21
36	Maximum entropy decomposition of flux distribution at steady state to elementary modes. Journal of Bioscience and Bioengineering, 2009, 107, 84-89.	2.2	28

Quanyu Zhao

#	Article	IF	CITATIONS
37	Genetic modification of flux for flux prediction of mutants. Bioinformatics, 2009, 25, 1702-1708.	4.1	18
38	Formulation of a Basal Medium for Primary Cell Culture of the Marine Sponge Hymeniacidon perleve. Biotechnology Progress, 2008, 21, 1008-1012.	2.6	19
39	Prediction of flux distribution of mutants by enzyme control fluxes with maximum entropy principal. Journal of Biotechnology, 2008, 136, S72.	3.8	Ο
40	Extended CADLIVE: a novel graphical notation for design of biochemical network maps and computational pathway analysis. Nucleic Acids Research, 2007, 35, e134-e134.	14.5	31
41	Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. BMC Systems Biology, 2007, 1, 31.	3.0	39
42	Biopotentials of marine sponges from China oceans: past and future. New Biotechnology, 2003, 20, 413-419.	2.7	23
43	Attachment of Marine Sponge Cells of Hymeniacidon perleve on Microcarriers. Biotechnology Progress, 2003, 19, 1569-1573.	2.6	8
44	Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). Journal of Biotechnology, 2003, 100, 161-168.	3.8	41