Lidong Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557950/publications.pdf

Version: 2024-02-01

		186265	155660
54	3,276	28	55
papers	citations	h-index	g-index
57	57	57	4743
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nature Biotechnology, 2008, 26, 1373-1378.	17.5	507
2	Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 419-424.	7.1	300
3	Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nature Communications, 2012, 3, 1283.	12.8	192
4	Point-of-care technologies for molecular diagnostics using a drop of blood. Trends in Biotechnology, 2014, 32, 132-139.	9.3	192
5	CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Science Advances, 2015, 1, e1500454.	10.3	190
6	Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18707-18712.	7.1	186
7	High-throughput analysis of yeast replicative aging using a microfluidic system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9364-9369.	7.1	141
8	Block-Cell-Printing for live single-cell printing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2948-2953.	7.1	122
9	CRISPR-Cas12a Coupled with Platinum Nanoreporter for Visual Quantification of SNVs on a Volumetric Bar-Chart Chip. Analytical Chemistry, 2019, 91, 12384-12391.	6.5	102
10	A Multistage Volumetric Bar Chart Chip for Visualized Quantification of DNA. Journal of the American Chemical Society, 2013, 135, 16785-16788.	13.7	84
11	Integration of Platinum Nanoparticles with a Volumetric Barâ€Chart Chip for Biomarker Assays. Angewandte Chemie - International Edition, 2014, 53, 12451-12455.	13.8	73
12	Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab on A Chip, 2009, 9, 2016.	6.0	69
13	Nanoporous Glass Integrated in Volumetric Bar-Chart Chip for Point-of-Care Diagnostics of Non-Small Cell Lung Cancer. ACS Nano, 2016, 10, 1640-1647.	14.6	67
14	Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1352-60.	7.1	61
15	Mesenchymalâ€Mode Migration Assay and Antimetastatic Drug Screening with Highâ€Throughput Microfluidic Channel Networks. Angewandte Chemie - International Edition, 2014, 53, 2344-2348.	13.8	57
16	Hand-Held and Integrated Single-Cell Pipettes. Journal of the American Chemical Society, 2014, 136, 10858-10861.	13.7	57
17	Evaluation of Single-Cell Cytokine Secretion and Cell-Cell Interactions with a Hierarchical Loading Microwell Chip. Cell Reports, 2020, 31, 107574.	6.4	50
18	Imaging of Cell–Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics. Journal of Immunology, 2015, 195, 1320-1330.	0.8	49

#	Article	IF	CITATIONS
19	Bridging the gap: microfluidic devices for short and long distance cell–cell communication. Lab on A Chip, 2017, 17, 1009-1023.	6.0	49
20	Microfluidic cytometric analysis of cancer cell transportability and invasiveness. Scientific Reports, 2015, 5, 14272.	3.3	48
21	A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab on A Chip, 2015, 15, 3300-3306.	6.0	44
22	Single-cell isolation by a modular single-cell pipette for RNA-sequencing. Lab on A Chip, 2016, 16, 4742-4748.	6.0	38
23	High-Throughput 3D Cell Invasion Chip Enables Accurate Cancer Metastatic Assays. Journal of the American Chemical Society, 2014, 136, 15257-15262.	13.7	37
24	Competitive Volumetric Bar-Chart Chip with Real-Time Internal Control for Point-of-Care Diagnostics. Analytical Chemistry, 2015, 87, 3771-3777.	6.5	36
25	Cas9 Ribonucleoprotein Delivery via Microfluidic Cellâ€Deformation Chip for Human Tâ€Cell Genome Editing and Immunotherapy. Advanced Biology, 2017, 1, e1600007.	3.0	36
26	Highâ€Throughput, Labelâ€Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity. Angewandte Chemie - International Edition, 2015, 54, 10838-10842.	13.8	33
27	Integrative volumetric bar-chart chip for rapid and quantitative point-of-care detection of myocardial infarction biomarkers. Lab on A Chip, 2016, 16, 2955-2962.	6.0	30
28	Recent Progress of Microfluidics in Translational Applications. Advanced Healthcare Materials, 2016, 5, 871-888.	7.6	30
29	Fast, Sensitive, and Quantitative Point-of-Care Platform for the Assessment of Drugs of Abuse in Urine, Serum, and Whole Blood. Analytical Chemistry, 2017, 89, 8273-8281.	6.5	28
30	Microfluidics Cell Loadingâ€Dock System: Ordered Cellular Array for Dynamic Lymphocyteâ€Communication Study. Advanced Biology, 2017, 1, e1700085.	3.0	27
31	Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR as9 System. Angewandte Chemie - International Edition, 2016, 55, 8561-8565.	13.8	26
32	Recent Advances in Microfluidic Platforms for Programming Cellâ€Based Living Materials. Advanced Materials, 2021, 33, e2005944.	21.0	26
33	Highly efficient genome editing of human hematopoietic stem cells via a nano-silicon-blade delivery approach. Integrative Biology (United Kingdom), 2017, 9, 548-554.	1.3	23
34	Retinal synaptic regeneration via microfluidic guiding channels. Scientific Reports, 2015, 5, 13591.	3.3	22
35	Integrated Microfluidic Chip for Efficient Isolation and Deformability Analysis of Circulating Tumor Cells. Advanced Biology, 2018, 2, 1800200.	3.0	21
36	Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie - International Edition, 2019, 58, 13700-13705.	13.8	21

#	Article	IF	Citations
37	Utilizing a high-throughput microfluidic platform to study hypoxia-driven mesenchymal-mode cell migration. Integrative Biology (United Kingdom), 2015, 7, 672-680.	1.3	20
38	A Brief Review of the Biophysical Hallmarks of Metastatic Cancer Cells. Cancer Hallmarks, 2013, 1, 59-66.	0.8	19
39	Human Equilibrative Nucleoside Transporter-1 Knockdown Tunes Cellular Mechanics through Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells. PLoS ONE, 2014, 9, e107973.	2.5	14
40	Microfluidic Platforms for Yeastâ€Based Aging Studies. Small, 2016, 12, 5787-5801.	10.0	14
41	Cellular response to moderate chromatin architectural defects promotes longevity. Science Advances, 2019, 5, eaav1165.	10.3	14
42	Microfluidics-Based Single-Cell Protrusion Analysis for Screening Drugs Targeting Subcellular Mitochondrial Trafficking in Cancer Progression. Analytical Chemistry, 2020, 92, 3095-3102.	6.5	14
43	Integrated Microfluidic System for Gene Silencing and Cell Migration. Advanced Biology, 2017, 1, 1700054.	3.0	13
44	Analysis of the bystander effect in cone photoreceptors via a guided neural network platform. Science Advances, 2018, 4, eaas9274.	10.3	12
45	A Photoconductive, Thiophene–Fullerene Double-Cable Polymer, Nanorod Device. Journal of Physical Chemistry Letters, 2012, 3, 478-481.	4.6	9
46	Biochipsâ€"New Platforms for Cellâ€Based Immunological Assays. Small Methods, 2018, 2, 1700254.	8.6	9
47	Microfluidic Cell Trap Arrays for Single Hematopoietic Stem/Progenitor Cell Behavior Analysis. Proteomics, 2020, 20, e1900223.	2.2	8
48	Recruited metastasis suppressor NM23-H2 attenuates expression and activity of peroxisome proliferator-activated receptor \hat{l} (PPAR \hat{l}) in human cholangiocarcinoma. Digestive and Liver Disease, 2015, 47, 62-67.	0.9	6
49	Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR as9 System. Angewandte Chemie, 2016, 128, 8703-8707.	2.0	6
50	Volumetric Bar-Chart Chips for Biosensing. Methods in Molecular Biology, 2017, 1570, 105-115.	0.9	6
51	Microfluidic Mapping of Cancer Cell–Protein Binding Interaction. ACS Applied Materials & Discrete Representation of Cancer Cell–Protein Binding Interfaces, 2017, 9, 22143-22148.	8.0	6
52	Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie, 2019, 131, 13838-13843.	2.0	6
53	Frontispiece: Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
54	Frontispiz: Highâ€Throughput Isolation of Cell Protrusions with Singleâ€Cell Precision for Profiling Subcellular Gene Expression. Angewandte Chemie, 2019, 131, .	2.0	0