
Mikhail Artemyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(maleic anhydride) Shell Modified with Negatively and Positively Charged Groups to Control Zeta Potential and Hydrodynamic Size of Encapsulated Quantum Dots at Variable pH. ChemNanoMat, 2022, 8,	1.5	2
2	Zeta Potential-Based Control of CdSe/ZnS Quantum Dot Photoluminescence. Journal of Physical Chemistry Letters, 2022, 13, 4912-4917.	2.1	6
3	High efficiency polymer solar cells sensitized by red-emitting ZnCuInS nanoplatelets. Journal of Materials Research and Technology, 2022, 19, 2623-2632.	2.6	Ο
4	Aggregative stability of colloidal 3D and 2D silver nanoparticles, stabilised by 11-mercaptoundecanoic acid, in the presence of singly charged cations. Journal of the Belarusian State University Chemistry, 2022, , 3-17.	0.1	0
5	Determination of pseudo-refractive index in self-assembled ligand layers from spectral shift of surface plasmon resonances in colloidal silver nanoplates. Zeitschrift Fur Physikalische Chemie, 2021, .	1.4	3
6	Synthesis and Optical Properties of In ₂ S ₃ -Hosted Colloidal Zn–Cu–In–S Nanoplatelets. ACS Omega, 2021, 6, 18939-18947.	1.6	2
7	Electrophoretically-Deposited CdSe Quantum Dot Films for Electrochromic Displays and Smart Windows. ACS Applied Nano Materials, 2021, 4, 6974-6984.	2.4	3
8	Electrostatic Deposition Kinetics of Colloidal Silver Nanoplates onto Optically and E-Beam Transparent Water-Insoluble Polycationic Films. Journal of Physical Chemistry C, 2021, 125, 17870-17880.	1.5	2
9	Electrostatic Repulsion Controls Efficiency of Cuâ€Free Clickâ€Reaction with Azideâ€Modified Semiconductor Quantum Dots. ChemNanoMat, 2020, 6, 292-297.	1.5	3
10	Emitters with different dimensionality: 2D cadmium chalcogenide nanoplatelets and 0D quantum dots in non-specific cell labeling and two-photon imaging. Nanotechnology, 2020, 31, 435102.	1.3	5
11	Reversible Photoinduced Luminescence Modulation from Nanospheres Containing CdSe/ZnS Quantum Dots and Photochromic Diarylethene. Journal of Physical Chemistry C, 2020, 124, 27064-27070.	1.5	12
12	Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale, 2020, 12, 14448-14458.	2.8	37
13	Pseudo-refractive index and excitonic features of single layer CdSe/CdS core–shell nanoplatelet films. Nanotechnology, 2020, 31, 435708.	1.3	2
14	Local electrical properties and charging/discharging of CdSe/CdS core-shell nanoplatelets. Applied Surface Science, 2020, 513, 145822.	3.1	5
15	Influence of calcium ions on physical chemical characteristics of semiconductor quantum dots encapsulated by amphiphilic polymer and their efficiency of cellular uptake. Journal of the Belarusian State University Chemistry, 2020, , 3-16.	0.1	Ο
16	Water-Soluble Cadmium Selenide Quantum Dots with Controlled Surface Charge. International Journal of Nanoscience, 2019, 18, 1940051.	0.4	0
17	Performance improvement strategies for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A, 2019, 7, 2464-2489.	5.2	90
18	Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics. Nanoscale, 2019, 11, 12230-12241.	2.8	19

#	Article	IF	CITATIONS
19	Highly luminescent Zn–Cu–In–S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites. Nanotechnology, 2019, 30, 395603.	1.3	12
20	Underpotential Deposition of Cadmium on Colloidal CdSe Quantum Dots: Effect of Particle Size and Surface Ligands. Journal of Physical Chemistry C, 2019, 123, 931-939.	1.5	8
21	A comparative study demonstrates strong size tunability of carrier–phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale, 2019, 11, 3958-3967.	2.8	24
22	Directed Two Photon Absorption and Quadratic Volume Scaling in Semiconductor Nanoplatelets. , 2019, , .		0
23	Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1619-1630.	1.4	4
24	Impact of Shell Growth on Recombination Dynamics and Exciton–Phonon Interaction in CdSe–CdS Core–Shell Nanoplatelets. ACS Nano, 2018, 12, 9476-9483.	7.3	39
25	Colloidal branched CdSe/CdS â€~nanospiders' with 2D/1D heterostructure. Nanotechnology, 2018, 29, 395604.	1.3	3
26	Multilayers of CdSe/CdS/ZnCdS Core/Wings/Shell Nanoplatelets Integrated in a Polymer Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	1.9	9
27	A strain-induced exciton transition energy shift in CdSe nanoplatelets: the impact of an organic ligand shell. Nanoscale, 2017, 9, 18042-18053.	2.8	71
28	Directed Two-Photon Absorption in CdSe Nanoplatelets Revealed by <i>k</i> -Space Spectroscopy. Nano Letters, 2017, 17, 6321-6329.	4.5	35
29	Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nature Nanotechnology, 2017, 12, 1155-1160.	15.6	131
30	Optical Properties of Semiconductor Colloidal Quantum Wells. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, , 211-225.	0.2	0
31	Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates. Nano Letters, 2016, 16, 6576-6583.	4.5	60
32	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math> -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck. Physical Review Letters, 2016, 116, 116802.	2.9	68
33	Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods. Optical Engineering, 2016, 55, 017104.	0.5	2
34	Determination of Concentration of Amphiphilic Polymer Molecules on the Surface of Encapsulated Semiconductor Nanocrystals. Langmuir, 2016, 32, 1955-1961.	1.6	17
35	Self-Assembly of CdSe Nanoplatelets into Stacks of Controlled Size Induced by Ligand Exchange. Journal of Physical Chemistry C, 2016, 120, 5764-5775.	1.5	64
36	Temperature dependent radiative and non-radiative recombination dynamics in CdSe–CdTe and CdTe–CdSe type II hetero nanoplatelets. Physical Chemistry Chemical Physics, 2016, 18, 3197-3203.	1.3	41

#	Article	IF	CITATIONS
37	One- and Two-Photon Absorption in CdS Nanodots and Wires: The Role of Dimensionality in the One- and Two-Photon Luminescence Excitation Spectrum. Journal of Physical Chemistry C, 2015, 119, 1260-1267.	1.5	27
38	Two Photon Absorption in Il–VI Semiconductors: The Influence of Dimensionality and Size. Nano Letters, 2015, 15, 4985-4992.	4.5	120
39	Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies. Chemical Physics, 2015, 455, 32-40.	0.9	6
40	Interaction of fluorescent semiconductor nanoparticles with tumor cells. Nanotechnologies in Russia, 2015, 10, 303-310.	0.7	3
41	Colloidal synthesis and optical properties of type-II CdSe–CdTe and inverted CdTe–CdSe core–wing heteronanoplatelets. Nanoscale, 2015, 7, 8084-8092.	2.8	54
42	Linear Absorption in CdSe Nanoplates: Thickness and Lateral Size Dependency of the Intrinsic Absorption. Journal of Physical Chemistry C, 2015, 119, 20156-20161.	1.5	119
43	WATER SOLUBLE QUANTUM DOTS ENCAPSULATED IN AMPHIPHILIC POLYMER FOR IN VITRO CELL LABELING. , 2015, , 451-453.		1
44	Analysis of structural and chemical features of CdHgSe nanocrystals via resonance Raman spectroscopy. Proceedings of SPIE, 2014, , .	0.8	1
45	Electroabsorption by 0D, 1D, and 2D Nanocrystals: A Comparative Study of CdSe Colloidal Quantum Dots, Nanorods, and Nanoplatelets. ACS Nano, 2014, 8, 7678-7686.	7.3	75
46	Formation of Ultrasmall PbS Nanocrystals in Octadecene at Mild Temperature Promoted by Alcohol or Acetone Injection. Journal of Physical Chemistry C, 2014, 118, 21104-21109.	1.5	5
47	Current methods of the synthesis of luminescent semiconductor nanocrystals for biomedical applications. Nanotechnologies in Russia, 2013, 8, 409-422.	0.7	3
48	Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy. Physical Review B, 2013, 88, .	1.1	43
49	Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials. Nanoscale, 2013, 5, 8781.	2.8	44
50	Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor. Nanotechnology, 2013, 24, 335701.	1.3	14
51	Linear and Two-Photon Absorption in Zero- and One-Dimensional CdS Nanocrystals: Influence of Size and Shape. Journal of Physical Chemistry C, 2013, 117, 25756-25760.	1.5	27
52	CdSe–CdS Nanoheteroplatelets with Efficient Photoexcitation of Central CdSe Region through Epitaxially Grown CdS Wings. Journal of the American Chemical Society, 2013, 135, 14476-14479.	6.6	103
53	Hybrid heterostructures based on aromatic polyimide and semiconductor CdSe quantum dots for photovoltaic applications. Applied Physics Letters, 2013, 103, .	1.5	27
54	Basic Principles and Current Trends in Colloidal Synthesis of Highly Luminescent Semiconductor Nanocrystals. Chemistry - A European Journal, 2013, 19, 1534-1546.	1.7	96

#	Article	IF	CITATIONS
55	CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer. Journal of Applied Physics, 2013, 113, 023502.	1.1	2
56	PbS Quantum Dots in a Porous Matrix: Optical Characterization. Journal of Physical Chemistry C, 2013, 117, 12318-12324.	1.5	34
57	Formation of structures based on semiconductor quantum dots and organic molecules in track pore membranes. Journal of Applied Physics, 2013, 113, 214305.	1.1	13
58	Quantum dot-containing polymer particles with thermosensitive fluorescence. Biosensors and Bioelectronics, 2013, 39, 187-193.	5.3	33
59	Composite system based on CdSe/ZnS quantum dots and GaAs nanowires. Semiconductors, 2013, 47, 1346-1350.	0.2	10
60	Anisotropy of light absorbed by an ensemble of CdSe quantum nanoplates. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 642.	0.2	4
61	Improving carrier injection in colloidal CdSe nanocrystals by embedding them in a pseudomorphic ZnSe/ZnMgSe quantum well structure. Nanotechnology, 2013, 24, 435202.	1.3	Ο
62	Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods. Optics Letters, 2013, 38, 3426.	1.7	15
63	Optical properties and aging of PbS quantum dots embedded in a porous matrix. Proceedings of SPIE, 2013, , .	0.8	1
64	Optical properties of two-dimensional (2D) CdSe nanostructures. , 2013, , .		2
65	Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments. Beilstein Journal of Nanotechnology, 2013, 4, 895-902.	1.5	32
66	Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film. Advances in Nano Research, 2013, 1, 153-158.	0.9	2
67	Molecular beacons involving highly luminescent colloidal quantum dots. Journal of Nanophotonics, 2012, 6, 060304.	0.4	2
68	Resonance energy transfer in conjugates of semiconductor nanocrystals and organic dye molecules. Journal of Nanophotonics, 2012, 6, 061705.	0.4	12
69	Size-dependent room-temperature luminescence decay from PbS quantum dots. Proceedings of SPIE, 2012, , .	0.8	10
70	Biosensing with thermosensitive fluorescent quantum dot-containing polymer particles. Proceedings of SPIE, 2012, , .	0.8	2
71	Low-field magnetic circular dichroism in silver and gold colloidal nanoparticles of different sizes, shapes, and aggregation states. Proceedings of SPIE, 2012, , .	0.8	14
72	Optically and Electrically Controlled Circularly Polarized Emission from Cholesteric Liquid Crystal Materials Doped with Semiconductor Quantum Dots. Advanced Materials, 2012, 24, 6216-6222.	11.1	78

#	Article	IF	CITATIONS
73	Anomalous Size-Dependent Decay of Low-Energy Luminescence from PbS Quantum Dots in Colloidal Solution. ACS Nano, 2012, 6, 8913-8921.	7.3	95
74	Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template. Nanotechnology, 2012, 23, 325201.	1.3	28
75	Oriented conjugates of monoclonal and single-domain antibodies with quantum dots for flow cytometry and immunohistochemistry diagnostic applications. , 2012, , .		3
76	Engineering of hybrid heterostructures from organic semiconductors and quantum dots for advanced photovoltaic applications. , 2012, , .		1
77	Measurement of the luminescence decay times of PbS quantum dots in the near-IR spectral range. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 868-873.	0.2	17
78	Electronic Structure and Exciton–Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets. Nano Letters, 2012, 12, 3151-3157.	4.5	224
79	Photoinduced processes in nanocrystals of cadmium selenide in an external electric field. Journal of Applied Spectroscopy, 2012, 78, 834-841.	0.3	2
80	Quenching of photoluminescence in cadmium selenide nanocrystals in external electric fields for different excitation photon energies. Journal of Applied Spectroscopy, 2012, 79, 95-103.	0.3	6
81	Photophysical properties of CdSe/ZnS quantum dot–porphyrin surface complexes in aqueous media. Theoretical and Experimental Chemistry, 2012, 48, 62-71.	0.2	2
82	Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 744-749.	1.7	20
83	Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 516-525.	1.7	140
84	Influence of pH on luminescence from water-soluble colloidal Mn-doped ZnSe quantum dots capped with different mercaptoacids. Journal of Luminescence, 2012, 132, 425-428.	1.5	19
85	Comparative Efficiency of Energy Transfer from CdSe–ZnS Quantum Dots or Nanorods to Organic Dye Molecules. ChemPhysChem, 2012, 13, 330-335.	1.0	29
86	Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology, 2011, 22, 455201.	1.3	20
87	Spectral study of the self-organization of quantum dots during the evaporation of colloidal solutions. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 699.	0.2	8
88	Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays. Nanomedicine, 2011, 6, 195-209.	1.7	37
89	Effect of dispersed CdSe/ZnS quantum dots on optical and electrical characteristics of nematic liquid crystal cells. Technical Physics Letters, 2011, 37, 1011-1014.	0.2	23
90	Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 897-902.	0.2	5

#	Article	IF	CITATIONS
91	Production of colloidal nanostructures for optical and spectral-analytic applications. Journal of Applied Spectroscopy, 2011, 78, 81-86.	0.3	0
92	Advanced procedures for labeling of antibodies with quantum dots. Analytical Biochemistry, 2011, 416, 180-185.	1.1	36
93	Optical sensing quantum dot-labeled polyacrolein particles prepared by layer-by-layer deposition technique. Journal of Colloid and Interface Science, 2011, 357, 265-272.	5.0	23
94	Size-dependence of the anharmonicities in the vibrational potential of colloidal CdSe nanocrystals. Solid State Communications, 2011, 151, 67-70.	0.9	28
95	Charge-controlled assembling of bacteriorhodopsin and semiconductor quantum dots for fluorescence resonance energy transfer-based nanophotonic applications. Applied Physics Letters, 2011, 98, 013703.	1.5	25
96	OPTICAL PROPERTIES OF CADMIUM SELENIDE NANOCRYSTALS WITH CADMIUM SUBSTITUTION BY MERCURY. , 2011, , .		1
97	Absorption saturation and self-action processes under resonant excitation of the basic exciton transition in CdSe/ZnS colloidal quantum dots. Physics of the Solid State, 2010, 52, 1941-1946.	0.2	12
98	A film luminescent nanosensor based on a quantum dot—organic molecule complex. Nanotechnologies in Russia, 2010, 5, 49-57.	0.7	1
99	Resonance Energy Transfer Improves the Biological Function of Bacteriorhodopsin within a Hybrid Material Built from Purple Membranes and Semiconductor Quantum Dots. Nano Letters, 2010, 10, 2640-2648.	4.5	80
100	Effect of an electric field on photoluminescence of cadmium selenide nanocrystals. Journal of Applied Spectroscopy, 2010, 77, 120-125.	0.3	11
101	Optical phonons in colloidal CdSe nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2488-2497.	0.7	21
102	Excitonic properties of single CdSe nanowires and coupling to plasmonic nanocavities. Physica Status Solidi (B): Basic Research, 2010, 247, 2498-2508.	0.7	1
103	MBE overgrowth of ex-situ prepared CdSe colloidal nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1523-1525.	0.8	5
104	Ignition and inertial confinement fusion at the National Ignition Facility. Journal of Physics: Conference Series, 2010, 244, 012006.	0.3	9
105	Dissociative CdSe/ZnS quantum dot-molecule complex for luminescent sensing of metal ions in aqueous solutions. Journal of Applied Physics, 2010, 108, 074306.	1.1	14
106	Raman investigation of strain effects in CdSe nanorods. Physica Status Solidi (B): Basic Research, 2009, 246, 2817-2819.	0.7	9
107	Highly fluorescent ethyl cellulose nanoparticles containing embedded semiconductor nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342, 59-64.	2.3	37
108	Luminescence in quantum-confined cadmium selenide nanocrystals and nanorods in external electric fields. Semiconductors, 2009, 43, 1008-1016.	0.2	20

#	Article	IF	CITATIONS
109	Geometry dependence of the phonon modes in CdSe nanorods. Nanotechnology, 2009, 20, 045705.	1.3	53
110	Efficiency of Energy Transfer from Organic Dye Molecules to CdSeâ 'ZnS Nanocrystals: Nanorods versus Nanodots. Journal of the American Chemical Society, 2009, 131, 8061-8065.	6.6	46
111	Fluorescence of semiconductor nanorods in liquid-crystal composites. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 306-309.	0.2	19
112	Direct Observation of the Radial Breathing Mode in CdSe Nanorods. Nano Letters, 2008, 8, 4614-4617.	4.5	36
113	Surface Plasmon Mediated Interference Phenomena in Low-Q Silver Nanowire Cavities. Nano Letters, 2008, 8, 31-35.	4.5	87
114	Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods. Physical Review B, 2008, 77, .	1.1	51
115	Bloch modes and disorder phenomena in coupled resonator chains. Physical Review B, 2007, 75, .	1.1	24
116	Colloidal quantum dots in high-Q pillar microcavities. , 2007, , .		0
117	CdSe quantum dots in single plasmonic nanocavities. , 2007, , .		0
118	Colloidal Quantum Dots in High-Q Pillar Microcavities. , 2007, , .		0
119	Laser induced photoprocesses in solid thin films of CdSe/ZnS nanoparticles. , 2007, , .		0
120	Band Formation in Coupled-Resonator Slow-Wave Structures. Optics Express, 2007, 15, 17362.	1.7	9
121	<title>Anti-Stokes photoluminescence of CdSe/ZnS nanoparticles in solution and condensed phase</title> . , 2007, , .		О
122	<title>Laser induced luminescence of dense films of CdSe/ZnS nanoparticles</title> ., 2007, , .		1
123	Colloidal Quantum Dots in All-Dielectric High- <i>Q</i> Pillar Microcavities. Nano Letters, 2007, 7, 2897-2900.	4.5	68
124	Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures. Physical Review Letters, 2007, 99, 136802.	2.9	275
125	Excitonâ^'Plasmon Interaction in a Composite Metalâ^'Insulatorâ^'Semiconductor Nanowire System. Journal of the American Chemical Society, 2007, 129, 14939-14945.	6.6	78
126	Self Organized Grown Stranski-Krastanow II-VI Quantum Dots Vs. Colloidal Nanocrystals Integrated In Epitaxial Nanostructures. AIP Conference Proceedings, 2007, , .	0.3	2

#	Article	IF	CITATIONS
127	Bloch modes and group velocity delay in coupled resonator chains. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3636-3646.	0.8	2
128	Effect of ZnS shell on the Raman spectra from CdSe nanorods. Physica Status Solidi - Rapid Research Letters, 2007, 1, 274-276.	1.2	25
129	ELECTROMODULATION OF PHOTOLUMINESCENCE FROM CdSe NANORODS FILM. , 2007, , .		0
130	LUMINESCENCE SPECTRA OF WATER-SOLUBLE CdSe NANOCRYSTALS UNDER A PROLONGED LASER IRRADIATION. , 2007, , .		0
131	Multiline spectra of single CdSeâ•ZnS core-shell nanorods. Applied Physics Letters, 2006, 89, 263115.	1.5	15
132	Photons in coupled microsphere resonators. Journal of Optics, 2006, 8, S113-S121.	1.5	30
133	Synthesis of Quantum Dot-Tagged Submicrometer Polystyrene Particles by Miniemulsion Polymerization. Langmuir, 2006, 22, 1810-1816.	1.6	132
134	Cavity QED with Semiconductor Nanocrystals. Nano Letters, 2006, 6, 557-561.	4.5	103
135	Recombination Dynamics of CdTe/CdS Coreâ^ Shell Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 2074-2079.	1.2	94
136	Effect of a dielectric substrate on whispering-gallery-mode sensors. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2361.	0.9	25
137	Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 100, 854-861.	0.2	8
138	Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence. Nanotechnology, 2006, 17, 5201-5206.	1.3	29
139	Photostability of luminescent water-soluble cadmium selenide nanocrystals with chemical surface modification. Journal of Applied Spectroscopy, 2006, 73, 572-575.	0.3	8
140	Improved fluorescent assay sensitivity using silver island films: Fluorescein isothiocyanate-labeled albumin as an example. Journal of Applied Spectroscopy, 2006, 73, 892-896.	0.3	12
141	DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology, 2006, 17, 581-587.	1.3	57
142	CQED with semiconductor nanocrystals. , 2006, , .		0
143	Extended and localized photon states in 1D-coupled resonators. , 2006, , .		0
144	Nanocrystal-doped polymer spheres as building blocks for coupled resonator optical waveguides. , 2005, , .		0

Mikhail Artemyev

#	Article	IF	CITATIONS
145	Exciton Fine Structure in Single CdSe Nanorods. Physical Review Letters, 2005, 94, 016803.	2.9	121
146	Monomolecular polymeric films with incorporated Au101 clusters. Microelectronic Engineering, 2005, 81, 400-404.	1.1	2
147	Hybrid Epitaxialâ^'Colloidal Semiconductor Nanostructures. Nano Letters, 2005, 5, 483-490.	4.5	35
148	Coupled-resonator optical waveguides doped with nanocrystals. Optics Letters, 2005, 30, 2116.	1.7	61
149	Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 2004, 70, .	1.1	58
150	ORGANIZED PLANAR NANOSTRUCTURES VIA INTERFACIAL SELF-ASSEMBLY AND DNA TEMPLATING. International Journal of Nanoscience, 2004, 03, 65-74.	0.4	4
151	Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 2004, 324, 60-67.	1.1	312
152	Fluorescence of CdSe/ZnS quantum dots in solid solutions in the presence of organic molecules DODCI. Journal of Luminescence, 2004, 110, 23-29.	1.5	5
153	Functionalized nanocrystal-tagged fluorescent polymer beads: synthesis, physicochemical characterization, and immunolabeling application. Analytical Biochemistry, 2004, 334, 257-265.	1.1	77
154	Self-Organized, Highly Luminescent CdSe Nanorodâ	6.6	52
155	Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dotâ~'Nanogold Assemblies. Nano Letters, 2004, 4, 451-457.	4.5	225
156	Spectroscopy of single CdSe nanorods. , 2004, , .		0
157	Photonic molecules doped with quantum dots. , 2004, , .		Ο
158	Dot-in-a-dot: electronic and photonic confinement in all three dimensions. Applied Physics B: Lasers and Optics, 2003, 77, 469-484.	1.1	42
159	Unidirectional Alignment of CdSe Nanorods. Nano Letters, 2003, 3, 509-512.	4.5	78
160	Mode control by nanoengineering light emitters in spherical microcavities. Applied Physics Letters, 2003, 83, 2686-2688.	1.5	35
161	Mode identification in spherical microcavities doped with quantum dots. Applied Physics Letters, 2002, 80, 3253-3255.	1.5	28
162	Electro-absorption of an ensemble of close-packed CdSe quantum dots. , 2002, , .		0

Electro-absorption of an ensemble of close-packed CdSe quantum dots. , 2002, , . 162

#	Article	IF	CITATIONS
163	Optical properties of quantum dots in photonic dots. , 2002, 4808, 136.		О
164	Quantum Dot Emission Confined by a Spherical Photonic Dot. Physica Status Solidi (B): Basic Research, 2002, 229, 423-426.	0.7	9
165	Probing the Exciton Density of States in Semiconductor Nanocrystals Using Integrated Photoluminescence Spectroscopy. Monatshefte Für Chemie, 2002, 133, 909-918.	0.9	10
166	Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections. Laboratory Investigation, 2002, 82, 1259-1261.	1.7	135
167	Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids. Nano Letters, 2002, 2, 1449-1452.	4.5	638
168	Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission. Nano Letters, 2001, 1, 309-314.	4.5	164
169	Photons confined in hollow microspheres. Applied Physics Letters, 2001, 78, 1032-1034.	1.5	56
170	Electrons and photons in mesoscopic structures: quantum dots in a photonic crystal and in a microcavity. , 1999, , .		0
171	Nonlinear spectroscopy of photocoloured polytungstic acid nanocomposites. Quantum Electronics, 1998, 28, 710-714.	0.3	4
172	Nonlinear spectroscopy of oxidised CuInS2nanocrystals. Quantum Electronics, 1998, 28, 69-72.	0.3	0
173	Nonlinear optical properties of oxidised CuS nanocrystals. Quantum Electronics, 1997, 27, 722-726.	0.3	1
174	Irreversible photochemical spectral hole burning in quantum-sized CdS nanocrystals embedded in a polymeric film. Chemical Physics Letters, 1995, 243, 450-455.	1.2	13
175	UV laser-induced transformation of thin evaporated CdTe films in air. Thin Solid Films, 1995, 264, 104-108.	0.8	2
176	Nanoscale modification of thin film surfaces by voltage pulses in STM. Microelectronic Engineering, 1995, 27, 109-112.	1.1	0
177	CdS quantum dots in colloids and polymer matrices: electronic structure and photochemical properties. Journal of Crystal Growth, 1994, 138, 993-997.	0.7	19
178	Photons confined in 3D-microcavities doped with quantum dots. , 0, , .		0
179	Fluorescent Colloidal Particles as Detection Tools in Biotechnology Systems. , 0, , 133-168.		16
180	Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots. Protocol Exchange, 0, , .	0.3	23