
Michail-Antisthenis I Tsompanas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557826/publications.pdf Version: 2024-02-01

MICHAIL-ANTISTHENIS I

#	Article	IF	CITATIONS
1	Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 2019, 436, 226832.	7.8	41
2	Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration and Biomimetics, 2012, 7, 036013.	2.9	39
3	Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould. IEEE Transactions on Cybernetics, 2015, 45, 1887-1899.	9.5	38
4	Hardware Acceleration of Cellular Automata <i>Physarum polycephalum</i> Model. Parallel Processing Letters, 2015, 25, 1540006.	0.6	27
5	A Biologically Inspired Network Design Model. Scientific Reports, 2015, 5, 10794.	3.3	23
6	Physarum in silicon: the Greek motorways study. Natural Computing, 2016, 15, 279-295.	3.0	22
7	Modeling Cache Memory Utilization on Multicore Using Common Pool Resource Game on Cellular Automata. ACM Transactions on Modeling and Computer Simulation, 2016, 26, 1-22.	0.8	20
8	Towards a slime Mould-FPGA interface. Biomedical Engineering Letters, 2015, 5, 51-57.	4.1	19
9	Mem-fractive properties of mushrooms. Bioinspiration and Biomimetics, 2021, 16, 066026.	2.9	19
10	Neural Networks Predicting Microbial Fuel Cells Output for Soft Robotics Applications. Frontiers in Robotics and Al, 2021, 8, 633414.	3.2	15
11	Slime mould imitates development of Roman roads in the Balkans. Journal of Archaeological Science: Reports, 2015, 2, 264-281.	0.5	14
12	Physarum machines imitating a Roman road network: the 3D approach. Scientific Reports, 2017, 7, 7010.	3.3	14
13	Cellular automata implementation of Oregonator simulating light-sensitive Belousov–Zhabotinsky medium. Nonlinear Dynamics, 2021, 104, 4103-4115.	5.2	14
14	Fungal electronics. BioSystems, 2022, 212, 104588.	2.0	14
15	Cellular non-linear network model of microbial fuel cell. BioSystems, 2017, 156-157, 53-62.	2.0	13
16	Memristive learning cellular automata for edge detection. Chaos, Solitons and Fractals, 2021, 145, 110700.	5.1	13
17	Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 2017, 12, e0177528.	2.5	13
18	Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. Npj Computational Materials, 2021, 7, .	8.7	12

MICHAIL-ANTISTHENIS I

#	Article	lF	CITATIONS
19	Light sensitive Belousov–Zhabotinsky medium accommodates multiple logic gates. BioSystems, 2021, 206, 104447.	2.0	10
20	A Cellular Automata Bioinspired Algorithm Designing Data Trees in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 11, 471045.	2.2	9
21	Liquid Marble Photosensor. ChemPhysChem, 2020, 21, 90-98.	2.1	9
22	In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times. Computer Methods and Programs in Biomedicine, 2021, 200, 105886.	4.7	9
23	Novelty search employed into the development of cancer treatment simulations. Informatics in Medicine Unlocked, 2020, 19, 100347.	3.4	8
24	Harnessing adaptive novelty for automated generation of cancer treatments. BioSystems, 2021, 199, 104290.	2.0	8
25	Cellular Automata Models Simulating Slime Mould Computing. Emergence, Complexity and Computation, 2016, , 563-594.	0.3	6
26	Street map analysis with excitable chemical medium. Physical Review E, 2018, 98, 012306.	2.1	6
27	Belousov-Zhabotinsky liquid marbles in robot control. Sensors and Actuators B: Chemical, 2019, 295, 194-203.	7.8	6
28	Cellular Automata Applications in Shortest Path Problem. Emergence, Complexity and Computation, 2018, , 199-237.	0.3	5
29	Implementation and Optimization of Chemical Logic Gates Using Memristive Cellular Automata. , 2020, ,		5
30	Memristive Oscillatory Networks for Computing: The Chemical Wave Propagation Paradigm. , 2021, , .		5
31	Modeling memory resources distribution on multicore processors using games on cellular automata lattices. , 2010, , .		4
32	Modelling Microbial Fuel Cells Using Lattice Boltzmann Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 2035-2045.	3.0	4
33	Utilizing Differential Evolution into Optimizing Targeted Cancer Treatments. Emergence, Complexity and Computation, 2021, , 328-340.	0.3	4
34	Metameric representations on optimization of nano particle cancer treatment. Biocybernetics and Biomedical Engineering, 2021, 41, 352-361.	5.9	4
35	On electrical gates on fungal colony. BioSystems, 2021, 209, 104507.	2.0	4
36	Fluidic gates simulated with lattice Boltzmann method under different Reynolds numbers. Journal of Computational Science, 2018, 28, 51-58.	2.9	3

MICHAIL-ANTISTHENIS I

#	Article	IF	CITATIONS
37	Margolus Chemical Wave Logic Gate with Memristive Oscillatory Networks. , 2021, , .		3
38	Chemical Wave Computing from Labware to Electrical Systems. Electronics (Switzerland), 2022, 11, 1683.	3.1	3
39	Evaluating conflicts impact over shared last-level cache using public goods game on cellular automata. , 2013, , .		2
40	Parallel Acceleration of Slime Mould Discrete Models. Emergence, Complexity and Computation, 2016, , 595-617.	0.3	2
41	Evolutionary Algorithms Designing Nanoparticle Cancer Treatments with Multiple Particle Types [Application Notes]. IEEE Computational Intelligence Magazine, 2021, 16, 85-99.	3.2	2
42	Optimization of Shared-Memory Multicore Systems Using Game Theory and Genetic Algorithms on Cellular Automata Lattices. , 2013, , .		1
43	Multifunctional Spatially-Expanded Logic Gate for Unconventional Computations with Memristor-Based Oscillators. , 2021, , .		1
44	The MapReduce application of matrix multiplication implemented on field programmable gate arrays. , 2017, , .		0
45	Hardware Implementation of a Biomimicking Hybrid CA. Lecture Notes in Computer Science, 2018, , 80-91.	1.3	0
46	Application of Slime Mould Computing on Archaeological Research. Emergence, Complexity and Computation, 2016, , 349-372.	0.3	0
47	Memristor-based Oscillator for Complex Chemical Wave Logic Computations: Fredkin Gate Paradigm. , 2022, , .		Ο