Thomas M Truskett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5557753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembling Inorganic Nanocrystal Gels. Nano Letters, 2022, 22, 1457-1466.	4.5	27
2	Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies. Science Advances, 2022, 8, eabm7364.	4.7	12
3	Machine Learning–Assisted Design of Material Properties. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 235-254.	3.3	13
4	Geometric model of crack-templated networks for transparent conductive films. Applied Physics Letters, 2022, 120, .	1.5	4
5	Treating random sequential addition via the replica method. Journal of Chemical Physics, 2022, 157, .	1.2	3
6	Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Communications Chemistry, 2022, 5, .	2.0	8
7	Wertheim's thermodynamic perturbation theory with double-bond association and its application to colloid–linker mixtures. Journal of Chemical Physics, 2021, 154, 024905.	1.2	10
8	Colloidal Nanocrystal Gels from Thermodynamic Principles. Accounts of Chemical Research, 2021, 54, 798-807.	7.6	26
9	Effects of linker flexibility on phase behavior and structure of linked colloidal gels. Journal of Chemical Physics, 2021, 154, 074901.	1.2	15
10	Prediction and Optimization of Ion Transport Characteristics in Nanoparticle-Based Electrolytes Using Convolutional Neural Networks. Journal of Physical Chemistry B, 2021, 125, 4838-4849.	1.2	13
11	Graphoepitaxy of hard spheres into square lattices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124115.	2.3	1
12	Influence of pore morphology on the diffusion of water in triblock copolymer membranes. Journal of Chemical Physics, 2020, 152, 014904.	1.2	9
13	Protein-Protein Interactions, Clustering, and Rheology for Bovine IgG up to High Concentrations Characterized by Small Angle X-Ray Scattering and Molecular Dynamics Simulations. Journal of Pharmaceutical Sciences, 2020, 109, 696-708.	1.6	19
14	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
15	Transport Mechanisms Underlying Ionic Conductivity in Nanoparticle-Based Single-Ion Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 6970-6975.	2.1	10
16	Stability of force-driven shear flows in nonequilibrium molecular simulations with periodic boundaries. Journal of Chemical Physics, 2020, 152, 214113.	1.2	0
17	Connecting Solute Diffusion to Morphology in Triblock Copolymer Membranes. Macromolecules, 2020, 53, 2336-2343.	2.2	10
18	Coarse-Grained Molecular Dynamics Simulations for Understanding the Impact of Short-Range Anisotropic Attractions on Structure and Viscosity of Concentrated Monoclonal Antibody Solutions. Molecular Pharmaceutics, 2020, 17, 1748-1756.	2.3	26

#	Article	IF	CITATIONS
19	Universal Gelation of Metal Oxide Nanocrystals via Depletion Attractions. Nano Letters, 2020, 20, 4007-4013.	4.5	16
20	Inverse methods for design of soft materials. Journal of Chemical Physics, 2020, 152, 140902.	1.2	63
21	Self-diffusion of a highly concentrated monoclonal antibody by fluorescence correlation spectroscopy: insight into protein–protein interactions and self-association. Soft Matter, 2019, 15, 6660-6676.	1.2	13
22	Structure and phase behavior of polymer-linked colloidal gels. Journal of Chemical Physics, 2019, 151, 124901.	1.2	28
23	Relating Collective Diffusion, Protein–Protein Interactions, and Viscosity of Highly Concentrated Monoclonal Antibodies through Dynamic Light Scattering. Industrial & Engineering Chemistry Research, 2019, 58, 22456-22471.	1.8	15
24	X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. Journal of Physical Chemistry B, 2019, 123, 5274-5290.	1.2	27
25	Influence of morphology of colloidal nanoparticle gels on ion transport and rheology. Journal of Chemical Physics, 2019, 150, 214903.	1.2	9
26	Enhancing Stability and Reducing Viscosity of a Monoclonal Antibody With Cosolutes by Weakening Protein Interactions. Journal of Pharmaceutical Sciences, 2019, 108, 2517-2526.	1.6	16
27	Quantized bounding volume hierarchies for neighbor search in molecular simulations on graphics processing units. Computational Materials Science, 2019, 164, 139-146.	1.4	12
28	Phase diagram for two-dimensional layer of soft particles. Soft Matter, 2019, 15, 4162-4169.	1.2	9
29	Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow. Soft Matter, 2019, 15, 3168-3178.	1.2	5
30	Assembly of particle strings via isotropic potentials. Journal of Chemical Physics, 2019, 150, 124903.	1.2	20
31	Indocyanine Green J Aggregates in Polymersomes for Near-Infrared Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2019, 11, 46437-46450.	4.0	46
32	The role of pressure in inverse design for assembly. Journal of Chemical Physics, 2019, 151, 104104.	1.2	9
33	Protein–Protein Interactions of Highly Concentrated Monoclonal Antibody Solutions via Static Light Scattering and Influence on the Viscosity. Journal of Physical Chemistry B, 2019, 123, 739-755.	1.2	32
34	Inverse Design of Self-Assembling Frank-Kasper Phases and Insights Into Emergent Quasicrystals. Journal of Physical Chemistry B, 2018, 122, 5547-5556.	1.2	20
35	Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline. Pharmaceutical Research, 2018, 35, 133.	1.7	38
36	Inverse design of multicomponent assemblies. Journal of Chemical Physics, 2018, 148, 104509.	1.2	27

#	Article	IF	CITATIONS
37	Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations. Journal of Chemical Physics, 2018, 149, 194109.	1.2	36
38	Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications. Journal of Chemical Physics, 2018, 149, 194110.	1.2	23
39	Communication: From close-packed to topologically close-packed: Formation of Laves phases in moderately polydisperse hard-sphere mixtures. Journal of Chemical Physics, 2018, 148, 191101.	1.2	25
40	Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8925-8930.	3.3	32
41	Interactions and design rules for assembly of porous colloidal mesophases. Soft Matter, 2017, 13, 1335-1343.	1.2	29
42	A Conversation with John McKetta. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 1-11.	3.3	5
43	Control of Primary Particle Spacing in Gold Nanoparticle Clusters for Both High NIR Extinction and Full Reversibility. Langmuir, 2017, 33, 3413-3426.	1.6	5
44	Probabilistic inverse design for self-assembling materials. Journal of Chemical Physics, 2017, 146, .	1.2	44
45	Reversible Self-Assembly of Glutathione-Coated Gold Nanoparticle Clusters via pH-Tunable Interactions. Langmuir, 2017, 33, 12244-12253.	1.6	43
46	Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices. Journal of Chemical Physics, 2017, 146, 144501.	1.2	17
47	Connection Between Thermodynamics and Dynamics of Simple Fluids in Pores: Impact of Fluid–Fluid Interaction Range and Fluid–Solid Interaction Strength. Journal of Physical Chemistry C, 2017, 121, 16316-16327.	1.5	12
48	Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. Molecular Pharmaceutics, 2017, 14, 3269-3280.	2.3	27
49	Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems. Langmuir, 2017, 33, 13955-13963.	1.6	4
50	Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody. Pharmaceutical Research, 2017, 34, 193-207.	1.7	50
51	Design of two-dimensional particle assemblies using isotropic pair interactions with an attractive well. AIP Advances, 2017, 7, .	0.6	12
52	Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices. Journal of Chemical Physics, 2016, 145, 054901.	1.2	32
53	On the formation of equilibrium gels via a macroscopic bond limitation. Journal of Chemical Physics, 2016, 145, 074906.	1.2	37
54	Impact of solvent granularity and layering on tracer hydrodynamics in confinement. Soft Matter, 2016, 12, 9561-9574.	1.2	6

#	Article	IF	CITATIONS
55	Communication: Inverse design for self-assembly via on-the-fly optimization. Journal of Chemical Physics, 2016, 145, .	1.2	52
56	Fluids with competing interactions. I. Decoding the structure factor to detect and characterize self-limited clustering. Journal of Chemical Physics, 2016, 145, .	1.2	31
57	Consequences of minimising pair correlations in fluids for dynamics, thermodynamics and structure. Molecular Physics, 2016, 114, 2411-2423.	0.8	1
58	Viscosity Reduction of a Concentrated Monoclonal Antibody with Arginine·HCl and Arginine·Glutamate. Industrial & Engineering Chemistry Research, 2016, 55, 11225-11234.	1.8	30
59	Graphoepitaxy for translational and orientational ordering of monolayers of rectangular nanoparticles. Physical Review E, 2016, 93, 032606.	0.8	3
60	Orientationally Ordered Silicon Nanocrystal Cuboctahedra in Superlattices. Nano Letters, 2016, 16, 7814-7821.	4.5	33
61	Cooling Dodecanethiol-Capped 2 nm Diameter Gold Nanocrystal Superlattices below Room Temperature Induces a Reversible Order–Disorder Structure Transition. Journal of Physical Chemistry C, 2016, 120, 27682-27687.	1.5	13
62	Fluids with competing interactions. II. Validating a free energy model for equilibrium cluster size. Journal of Chemical Physics, 2016, 145, .	1.2	13
63	Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature. Journal of Chemical Physics, 2016, 144, 084502.	1.2	15
64	Formation of Small Gold Nanoparticle Chains with High NIR Extinction through Bridging with Calcium Ions. Langmuir, 2016, 32, 1127-1138.	1.6	21
65	Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. Soft Matter, 2016, 12, 2025-2039.	1.2	99
66	High concentration tangential flow ultrafiltration of stable monoclonal antibody solutions with low viscosities. Journal of Membrane Science, 2016, 508, 113-126.	4.1	40
67	Assembly of nothing: equilibrium fluids with designed structured porosity. Soft Matter, 2016, 12, 2663-2667.	1.2	41
68	Linking Semiconductor Nanocrystals into Gel Networks through Allâ€Inorganic Bridges. Angewandte Chemie - International Edition, 2015, 54, 14840-14844.	7.2	45
69	Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting?. Faraday Discussions, 2015, 181, 181-192.	1.6	34
70	How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics. Journal of Physical Chemistry B, 2015, 119, 9103-9113.	1.2	4
71	Web applet for predicting structure and thermodynamics of complex fluids. American Journal of Physics, 2015, 83, 219-222.	0.3	1
72	Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions. Physical Review E, 2015, 91, 042312.	0.8	36

#	Article	IF	CITATIONS
73	Predicting the structure of fluids with piecewise constant interactions: Comparing the accuracy of five efficient integral equation theories. Physical Review E, 2015, 91, 043307.	0.8	3
74	Tuning structure and mobility of solvation shells surrounding tracer additives. Journal of Chemical Physics, 2015, 142, 124501.	1.2	6
75	Equilibrium cluster fluids: pair interactions via inverse design. Soft Matter, 2015, 11, 9342-9354.	1.2	32
76	Communication: Local structure-mobility relationships of confined fluids reverse upon supercooling. Journal of Chemical Physics, 2015, 142, 161102.	1.2	11
77	Gold nanoparticles with high densities of small protuberances on nanocluster cores with strong NIR extinction. RSC Advances, 2015, 5, 104674-104687.	1.7	7
78	Breakup of Oil Jets into Droplets in Seawater with Environmentally Benign Nanoparticle and Surfactant Dispersants. Industrial & Engineering Chemistry Research, 2015, 54, 4243-4251.	1.8	10
79	Plasmonic biodegradable gold nanoclusters with high NIR-absorbance for biomedical imaging. Proceedings of SPIE, 2014, , .	0.8	2
80	Graphoepitaxy for Pattern Multiplication of Nanoparticle Monolayers. Physical Review Letters, 2014, 113, 085503.	2.9	6
81	Note: Position-dependent and pair diffusivity profiles from steady-state solutions of color reaction-counterdiffusion problems. Journal of Chemical Physics, 2014, 141, 046101.	1.2	11
82	Synergistic Formation and Stabilization of Oil-in-Water Emulsions by a Weakly Interacting Mixture of Zwitterionic Surfactant and Silica Nanoparticles. Langmuir, 2014, 30, 984-994.	1.6	90
83	Dimensionality and Design of Isotropic Interactions that Stabilize Honeycomb, Square, Simple Cubic, and Diamond Lattices. Physical Review X, 2014, 4, .	2.8	32
84	Inverse methods for material design. AICHE Journal, 2014, 60, 2732-2740.	1.8	77
85	High Interfacial Activity of Polymers "Grafted through―Functionalized Iron Oxide Nanoparticle Clusters. Langmuir, 2014, 30, 10188-10196.	1.6	31
86	Modified Montmorillonite Clay Microparticles for Stable Oil-in-Seawater Emulsions. ACS Applied Materials & Interfaces, 2014, 6, 11502-11513.	4.0	78
87	Structure, Thermodynamics, and Position-Dependent Diffusivity in Fluids with Sinusoidal Density Variations. Langmuir, 2014, 30, 8247-8252.	1.6	13
88	Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1884-1895.	1.5	5
89	Quenched Assembly of NIR-Active Gold Nanoclusters Capped with Strongly Bound Ligands by Tuning Particle Charge via pH and Salinity. Journal of Physical Chemistry C, 2014, 118, 14291-14298.	1.5	16
90	Connection between Thermodynamics and Dynamics of Simple Fluids in Highly Attractive Pores. Langmuir, 2013, 29, 14527-14535.	1.6	15

#	Article	IF	CITATIONS
91	Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid. Physical Review Letters, 2013, 111, 235901.	2.9	65
92	Communication: Phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states. Journal of Chemical Physics, 2013, 139, 141102.	1.2	14
93	Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter, 2013, 9, 1766-1771.	1.2	30
94	Structural Ensemble of an Intrinsically Disordered Polypeptide. Journal of Physical Chemistry B, 2013, 117, 118-124.	1.2	72
95	Inverse design of simple pairwise interactions with low-coordinated 3D lattice ground states. Soft Matter, 2013, 9, 3866.	1.2	74
96	Charged Gold Nanoparticles with Essentially Zero Serum Protein Adsorption in Undiluted Fetal Bovine Serum. Journal of the American Chemical Society, 2013, 135, 7799-7802.	6.6	79
97	Equilibrium Gold Nanoclusters Quenched with Biodegradable Polymers. ACS Nano, 2013, 7, 239-251.	7.3	51
98	Communication: Fine discretization of pair interactions and an approximate analytical strategy for predicting equilibrium behavior of complex fluids. Journal of Chemical Physics, 2013, 139, 161102.	1.2	5
99	Enhancing tracer diffusivity by tuning interparticle interactions and coordination shell structure. Soft Matter, 2012, 8, 4083-4089.	1.2	14
100	Concentrated Dispersions of Equilibrium Protein Nanoclusters That Reversibly Dissociate into Active Monomers. ACS Nano, 2012, 6, 1357-1369.	7.3	104
101	Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and In Vivo bioavailability. Journal of Pharmaceutical Sciences, 2012, 101, 3763-3778.	1.6	13
102	Mapping between long-time molecular and Brownian dynamics. Soft Matter, 2011, 7, 9859.	1.2	30
103	Implications of the effective one-component analysis of pair correlations in colloidal fluids with polydispersity. Journal of Chemical Physics, 2011, 135, 124513.	1.2	16
104	Communication: Generalizing Rosenfeld's excess-entropy scaling to predict long-time diffusivity in dense fluids of Brownian particles: From hard to ultrasoft interactions. Journal of Chemical Physics, 2011, 134, 081101.	1.2	51
105	Putting the squeeze on cavities in liquids: Quantifying pressure effects on solvation using simulations and scaled-particle theory. Journal of Chemical Physics, 2011, 134, 014507.	1.2	15
106	Impact of surface roughness on diffusion of confined fluids. Journal of Chemical Physics, 2011, 135, 154502.	1.2	30
107	Structural signatures of mobility on intermediate time scales in a supercooled fluid. Journal of Chemical Physics, 2010, 132, .	1.2	15
108	Excess entropy scaling of dynamic quantities for fluids of dumbbell-shaped particles. Journal of Chemical Physics, 2010, 133, 104506.	1.2	33

#	Article	IF	CITATIONS
109	Excess-entropy scaling of dynamics for a confined fluid of dumbbell-shaped particles. Physical Review E, 2010, 82, 041201.	0.8	22
110	On the Use of Excess Entropy Scaling To Describe Single-Molecule and Collective Dynamic Properties of Hydrocarbon Isomer Fluids. Journal of Physical Chemistry B, 2010, 114, 16487-16493.	1.2	40
111	On the Use of Excess Entropy Scaling to Describe the Dynamic Properties of Water. Journal of Physical Chemistry B, 2010, 114, 10558-10566.	1.2	61
112	Concentration and crowding effects on protein stability from a coarse-grained model. , 2009, , 1-25.		0
113	Insights Into Crowding Effects on Protein Stability From a Coarse-Grained Model. Journal of Biomechanical Engineering, 2009, 131, 071002.	0.6	13
114	Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures. Journal of Chemical Physics, 2009, 131, 161101.	1.2	31
115	Response to "Comment on †Residual multiparticle entropy does not generally change sign near freezing' ―[J. Chem. Phys. 130, 037101 (2009)]. Journal of Chemical Physics, 2009, 130, 037102.	1.2	4
116	RELATIONSHIP BETWEEN SHEAR VISCOSITY AND STRUCTURE OF A MODEL COLLOIDAL SUSPENSION. Chemical Engineering Communications, 2009, 197, 63-75.	1.5	6
117	Polymer Conductivity through Particle Connectivity. Chemistry of Materials, 2009, 21, 1948-1954.	3.2	30
118	Anomalous structure and dynamics of the Gaussian-core fluid. Physical Review E, 2009, 79, 031203.	0.8	100
119	Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles. Physical Review E, 2009, 80, 061205.	0.8	79
120	Available states and available space: static properties that predict self-diffusivity of confined fluids. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P04006.	0.9	43
121	Layering and Position-Dependent Diffusive Dynamics of Confined Fluids. Physical Review Letters, 2008, 100, 145901.	2.9	161
122	Structural anomalies of fluids: Origins in second and higher coordination shells. Physical Review E, 2008, 77, 041201.	0.8	41
123	Attractions, Water Structure, and Thermodynamics of Hydrophobic Polymer Collapse. Journal of Physical Chemistry B, 2008, 112, 13193-13196.	1.2	23
124	How Concentration and Crowding Impact Protein Stability: Insights From a Coarse-Grained Model. , 2008, , .		0
125	Residual multiparticle entropy does not generally change sign near freezing. Journal of Chemical Physics, 2008, 128, 161101.	1.2	14
126	Tuning Density Profiles and Mobility of Inhomogeneous Fluids. Physical Review Letters, 2008, 100, 106001.	2.9	60

#	Article	IF	CITATIONS
127	Shear-rate-dependent structural order and viscosity of a fluid with short-range attractions. Physical Review E, 2008, 78, 010201.	0.8	7
128	Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 733-738.	3.3	113
129	Relationships between Self-Diffusivity, Packing Fraction, and Excess Entropy in Simple Bulk and Confined Fluids. Journal of Physical Chemistry B, 2007, 111, 10054-10063.	1.2	94
130	Does confining the hard-sphere fluid between hard walls change its average properties?. Journal of Chemical Physics, 2007, 126, 244708.	1.2	65
131	Confinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures. Journal of Chemical Physics, 2007, 127, 154513.	1.2	32
132	How short-range attractions impact the structural order, self-diffusivity, and viscosity of a fluid. Journal of Chemical Physics, 2007, 127, 044502.	1.2	59
133	Effect of Dilute Nitric Acid on Crystallization and Fracture of Amorphous Solid Water Films. Journal of Physical Chemistry C, 2007, 111, 10438-10447.	1.5	7
134	Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. III: Directional Protein Interactions. Biophysical Journal, 2007, 92, 4316-4324.	0.2	25
135	Thermodynamics Predicts How Confinement Modifies the Dynamics of the Equilibrium Hard-Sphere Fluid. Physical Review Letters, 2006, 96, 177804.	2.9	133
136	Relationship between thermodynamics and dynamics of supercooled liquids. Journal of Chemical Physics, 2006, 125, 076102.	1.2	106
137	Model for the free-volume distributions of equilibrium fluids. Journal of Chemical Physics, 2006, 124, 214502.	1.2	15
138	Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. II: Phase Behavior. Biophysical Journal, 2006, 90, 1949-1960.	0.2	34
139	Heteropolymer Collapse Theory for Protein Folding in the Pressure-Temperature Plane. Biophysical Journal, 2006, 91, 2427-2435.	0.2	36
140	Excess-entropy-based anomalies for a waterlike fluid. Journal of Chemical Physics, 2006, 125, 244502.	1.2	148
141	Volatile Diffusional Character of Cytoplasm. Journal of Physical Chemistry B, 2006, 110, 25606-25607.	1.2	6
142	Transport in Amorphous Solid Water Films:Â Implications for Self-Diffusivity. Journal of Physical Chemistry B, 2006, 110, 17987-17997.	1.2	34
143	Evidence that Amorphous Water below 160 K Is Not a Fragile Liquid. Journal of Physical Chemistry B, 2006, 110, 11033-11036.	1.2	38
144	Free Volumes and the Anomalous Self-Diffusivity of Attractive Colloids. Journal of Physical Chemistry B 2006 110 5166-5169	1.2	8

#	Article	IF	CITATIONS
145	Quantitative Link between Single-Particle Dynamics and Static Structure of Supercooled Liquids. Journal of Physical Chemistry B, 2006, 110, 18147-18150.	1.2	95
146	Intrinsic vulnerabilities to mechanical failure in nanoscale films. Mechanics of Materials, 2006, 38, 924-932.	1.7	2
147	Using available volume to predict fluid diffusivity in random media. Physical Review E, 2006, 74, 040102.	0.8	22
148	Analytical model for studying how environmental factors influence protein conformational stability in solution. Journal of Chemical Physics, 2006, 125, 224903.	1.2	2
149	Modeling Water, the Hydrophobic Effect, and Ion Solvation. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 173-199.	18.3	363
150	Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9475-9480.	3.3	268
151	Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. Biophysical Journal, 2005, 89, 2372-2384.	0.2	40
152	Using Energy Landscapes To Predict the Properties of Thin Filmsâ€. Journal of Physical Chemistry B, 2004, 108, 19769-19779.	1.2	20
153	A simple analytical model of water. Biophysical Chemistry, 2003, 105, 449-459.	1.5	22
154	Ideal glass transitions in thin films: An energy landscape perspective. Journal of Chemical Physics, 2003, 119, 1897-1900.	1.2	29
155	The subtleties of water in small spaces. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10139-10140.	3.3	38
156	Response to "Comment on â€~A simple molecular thermodynamic theory of hydrophobic hydration' â€ Chem. Phys. 119, 10448 (2003)]. Journal of Chemical Physics, 2003, 119, 10450-10451.	•[] _{:2}	5
157	A simple molecular thermodynamic theory of hydrophobic hydration. Journal of Chemical Physics, 2002, 116, 2907-2921.	1.2	118
158	Comment on "Observations on an equation of state for water confined in narrow slit-pores―[J. Chem. Phys. 116, 2565 (2002)]. Journal of Chemical Physics, 2002, 117, 8162-8163.	1.2	3
159	A Simple Statistical Mechanical Model of Water. Journal of Physical Chemistry B, 2002, 106, 11829-11842.	1.2	58
160	Predicting water's phase diagram and liquid-state anomalies. Journal of Chemical Physics, 2002, 117, 5101-5104.	1.2	54
161	The Kauzmann Paradox Revisitedâ€. Journal of Physical Chemistry B, 2001, 105, 11809-11816.	1.2	131
162	Iso-g(2)Processes in Equilibrium Statistical Mechanicsâ€. Journal of Physical Chemistry B, 2001, 105, 6592-6597.	1.2	25

#	Article	IF	CITATIONS
163	Theory of supercooled liquids and glasses: Energy landscape and statistical geometry perspectives. Advances in Chemical Engineering, 2001, 28, 21-79.	0.5	58
164	Thermodynamic implications of confinement for a waterlike fluid. Journal of Chemical Physics, 2001, 114, 2401-2418.	1.2	143
165	Triangle Distribution and Equation of State for Classical Rigid Disks. Journal of Statistical Physics, 2000, 100, 49-72.	0.5	16
166	Towards a quantification of disorder in materials: Distinguishing equilibrium and glassy sphere packings. Physical Review E, 2000, 62, 993-1001.	0.8	258
167	Equation of state of the rigid disk fluid from its triangle distribution. Journal of Chemical Physics, 2000, 113, 10186-10190.	1.2	6
168	Nonequilibrium hard-disk packings with controlled orientational order. Journal of Chemical Physics, 2000, 113, 4844.	1.2	51
169	Is Random Close Packing of Spheres Well Defined?. Physical Review Letters, 2000, 84, 2064-2067.	2.9	1,173
170	Liquid Structure via Cavity Size Distributions. Journal of Physical Chemistry B, 2000, 104, 12028-12034.	1.2	41
171	A single-bond approach to orientation-dependent interactions and its implications for liquid water. Journal of Chemical Physics, 1999, 111, 2647-2656.	1.2	157
172	The statistical geometry of voids in liquids. Fluid Phase Equilibria, 1999, 158-160, 549-556.	1.4	19
173	The Equation of State of an Energy Landscape. Journal of Physical Chemistry B, 1999, 103, 7390-7397.	1.2	103
174	Configurational Properties and Corresponding States in Simple Fluids and Water. Journal of Physical Chemistry B, 1999, 103, 5106-5116.	1.2	30
175	Free volume in the hard sphere liquid. Molecular Physics, 1998, 95, 289-297.	0.8	112
176	Density fluctuations in many-body systems. Physical Review E, 1998, 58, 7369-7380.	0.8	30
177	Structural precursor to freezing in the hard-disk and hard-sphere systems. Physical Review E, 1998, 58, 3083-3088.	0.8	147
178	Free volume in the hard sphere liquid. Molecular Physics, 1998, 95, 289-297.	0.8	25