Cheng Wei Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556692/publications.pdf

Version: 2024-02-01

471 papers

35,035 citations

103 h-index 163 g-index

481 all docs

481 docs citations

times ranked

481

20579 citing authors

#	Article	IF	CITATIONS
1	Near-Omnidirectional Broadband Metamaterial Absorber for TM-Polarized Wave Based on Radiation Pattern Synthesis. IEEE Transactions on Antennas and Propagation, 2022, 70, 420-429.	3.1	12
2	A phase-to-intensity strategy of angular velocity measurement based on photonic orbital angular momentum. Nanophotonics, 2022, 11, 865-872.	2.9	15
3	A Modular Design of Continuously Tunable Full Color Plasmonic Pixels with Broken Rotational Symmetry. Advanced Functional Materials, 2022, 32, 2108437.	7.8	11
4	Reconfiguring Colors of Single Relief Structures by Directional Stretching. Advanced Materials, 2022, 34, e2108128.	11.1	29
5	Multidimensional nanoscopic chiroptics. Nature Reviews Physics, 2022, 4, 113-124.	11.9	87
6	Reciprocity of thermal diffusion in time-modulated systems. Nature Communications, 2022, 13, 167.	5.8	24
7	Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. ELight, 2022, 2, .	11.9	190
8	Diffusive topological transport in spatiotemporal thermal lattices. Nature Physics, 2022, 18, 450-456.	6.5	39
9	Schrödinger's red pixel by quasi-bound-states-in-the-continuum. Science Advances, 2022, 8, eabm4512.	4.7	53
10	Enhanced Photogating Effect in Graphene Photodetectors <i>via</i> Potential Fluctuation Engineering. ACS Nano, 2022, 16, 4458-4466.	7.3	41
11	Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. Nano Letters, 2022, 22, 1769-1777.	4.5	17
12	Passive Ultraâ€Conductive Thermal Metamaterials. Advanced Materials, 2022, 34, e2200329.	11.1	15
13	Can Weak Chirality Induce Strong Coupling between Resonant States?. Physical Review Letters, 2022, 128, 146102.	2.9	28
14	Observation of Weyl exceptional rings in thermal diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110018119.	3.3	21
15	Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials. Physical Review Letters, 2022, 128, 145901.	2.9	56
16	Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	8
17	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. Nano Letters, 2022, 22, 4260-4268.	4.5	40
18	Single-layer spatial analog meta-processor for imaging processing. Nature Communications, 2022, 13, 2188.	5.8	58

#	Article	IF	CITATIONS
19	A Realâ€Time Selfâ€Adaptive Thermal Metasurface. Advanced Materials, 2022, 34, e2201093.	11.1	23
20	A metasurface-based light-to-microwave transmitter for hybrid wireless communications. Light: Science and Applications, 2022, 11, 126.	7.7	47
21	Heat transfer control using a thermal analogue of coherent perfect absorption. Nature Communications, 2022, 13, 2683.	5. 8	21
22	Programmable Controlling of Multiple Spatial Harmonics via a Nonlinearly Phased Grating Metasurface. Advanced Functional Materials, 2022, 32, .	7.8	16
23	Breaking the symmetry of polarizers. Journal of Semiconductors, 2022, 43, 050401.	2.0	0
24	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
25	Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. ELight, 2022, 2, .	11.9	81
26	Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34, .	11.1	18
27	Unidirectional bound states in the continuum in Weyl semimetal nanostructures. Photonics Research, 2022, 10, 1828.	3.4	7
28	Negative Reflection and Negative Refraction in Biaxial van der Waals Materials. Nano Letters, 2022, 22, 5607-5614.	4.5	18
29	Giant bipolar unidirectional photomagnetoresistance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
30	Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics, 2022, 5, 489-496.	13.1	52
31	Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. ELight, 2022, 2, .	11.9	49
32	Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nature Communications, 2022, 13 , .	5.8	131
33	Nanophotonic Structural Colors. ACS Photonics, 2021, 8, 18-33.	3.2	181
34	Engineered disorder in photonics. Nature Reviews Materials, 2021, 6, 226-243.	23.3	129
35	Pathâ€Dependent Thermal Metadevice beyond Janus Functionalities. Advanced Materials, 2021, 33, e2003084.	11.1	26
36	What limits limits?. National Science Review, 2021, 8, nwaa210.	4.6	2

#	Article	IF	CITATIONS
37	NON-HERMITIAN ELECTROMAGNETIC METASURFACES AT EXCEPTIONAL POINTS (INVITED REVIEW). Progress in Electromagnetics Research, 2021, 171, 1-20.	1.6	48
38	Diffusive nonreciprocity and thermal diode. Physical Review B, 2021, 103, .	1.1	26
39	Optical Bound States in Continuum in MoS ₂ -Based Metasurface for Directional Light Emission. Nano Letters, 2021, 21, 967-972.	4.5	60
40	Many-particle induced band renormalization processes in few- and mono-layer MoS ₂ . Nanotechnology, 2021, 32, 135208.	1.3	10
41	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. Physical Review Applied, 2021, 15, .	1.5	7
42	Metaoptronic Multiplexed Interface for Probing Bioentity Behaviors. Nano Letters, 2021, 21, 2681-2689.	4.5	15
43	Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 2021, 6, 488-507.	23.3	270
44	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
45	Spinâ€Encoded Wavelengthâ€Direction Multitasking Janus Metasurfaces. Advanced Optical Materials, 2021, 9, 2100190.	3.6	73
46	From Lingering to Rift: Metasurface Decoupling for Near―and Farâ€Field Functionalization. Advanced Materials, 2021, 33, e2007507.	11.1	60
47	Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO ₃ and Polar Dielectric Interfaces. Nano Letters, 2021, 21, 3112-3119.	4.5	79
48	Reply to: Reconsidering metasurface lasers. Nature Photonics, 2021, 15, 339-340.	15.6	1
49	Smart Doppler Cloak Operating in Broad Band and Full Polarizations. Advanced Materials, 2021, 33, e2007966.	11.1	52
50	Polarization-insensitive 3D conformal-skin metasurface cloak. Light: Science and Applications, 2021, 10, 75.	7.7	111
51	Floating solid-state thin films with dynamic structural colour. Nature Nanotechnology, 2021, 16, 795-801.	15.6	41
52	Twistronics for photons: opinion. Optical Materials Express, 2021, 11, 1377.	1.6	30
53	Thermal camouflaging metamaterials. Materials Today, 2021, 45, 120-141.	8.3	165
54	Phase and Polarization Modulations Using Radiationâ€Type Metasurfaces. Advanced Optical Materials, 2021, 9, 2100159.	3.6	21

#	Article	IF	Citations
55	Mid-infrared semimetal polarization detectors with configurable polarity transition. Nature Photonics, 2021, 15, 614-621.	15.6	97
56	Efficient and Tunable Reflection of Phonon Polaritons at Builtâ€In Intercalation Interfaces. Advanced Materials, 2021, 33, e2008070.	11.1	16
57	Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter. Photonics Research, 2021, 9, 1048.	3.4	24
58	Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nature Communications, 2021, 12, 2974.	5.8	92
59	Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS Nano, 2021, 15, 10185-10193.	7.3	21
60	Enhanced light-matter interactions at photonic magic-angle topological transitions. Applied Physics Letters, 2021, 118, .	1.5	36
61	Tailoring Light with Layered and Moiré Metasurfaces. Trends in Chemistry, 2021, 3, 342-358.	4.4	69
62	Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Science Advances, 2021, 7, .	4.7	84
63	Quo Vadis, Metasurfaces?. Nano Letters, 2021, 21, 5461-5474.	4. 5	129
64	Metasurfaces for bioelectronics and healthcare. Nature Electronics, 2021, 4, 382-391.	13.1	70
65	High-resolution light field prints by nanoscale 3D printing. Nature Communications, 2021, 12, 3728.	5 . 8	29
66	Nonlinearity-induced nanoparticle circumgyration at sub-diffraction scale. Nature Communications, 2021, 12, 3722.	5.8	20
67	Infrared metasurface-enabled compact polarization nanodevices. Materials Today, 2021, 50, 499-515.	8.3	47
68	Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe ₂ . ACS Applied Materials & Interfaces, 2021, 13, 37527-37534.	4.0	9
69	Configurable Phase Transitions in a Topological Thermal Material. Physical Review Letters, 2021, 127, 105901.	2.9	31
70	Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature, 2021, 596, 362-366.	13.7	102
71	Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. ELight, 2021, $1, .$	11.9	132
72	Interface nano-optics with van der Waals polaritons. Nature, 2021, 597, 187-195.	13.7	143

#	Article	IF	Citations
73	Ï€-phase modulated monolayer supercritical lens. Nature Communications, 2021, 12, 32.	5.8	30
74	Dispersion-Engineered, Broadband, Wide-Angle, Polarization-Independent Microwave Metamaterial Absorber. IEEE Transactions on Antennas and Propagation, 2021, 69, 229-238.	3.1	75
75	Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 2021, 7, .	4.7	142
76	Dynamic thermal trapping enables cross-species smart nanoparticle swarms. Science Advances, 2021, 7, .	4.7	1
77	Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. ACS Nano, 2021, 15, 2893-2900.	7.3	63
78	Point-Source Geometric Metasurface Holography. Nano Letters, 2021, 21, 2332-2338.	4.5	43
79	Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
80	Multidimensional phase singularities in nanophotonics. Science, 2021, 374, eabj0039.	6.0	108
81	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Letters, 2021, 21, 8979-8986.	4.5	41
82	Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature Photonics, 2021, 15, 901-907.	15.6	112
83	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021, 2, 100179.	5.2	200
84	Dynamics of Topological Polarization Singularity in Momentum Space. Physical Review Letters, 2021, 127, 176101.	2.9	50
85	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. Physical Review Letters, 2021, 127, 217401.	2.9	13
86	Robustly printable freeform thermal metamaterials. Nature Communications, 2021, 12, 7228.	5.8	64
87	Evolution and Nonreciprocity of Loss-Induced Topological Phase Singularity Pairs. Physical Review Letters, 2021, 127, 266101.	2.9	42
88	Force measurement goes to femto-Newton sensitivity of single microscopic particle. Light: Science and Applications, 2021, 10, 243.	7.7	7
89	Regulated Photon Transport in Chaotic Microcavities by Tailoring Phase Space. Physical Review Letters, 2021, 127, 273902.	2.9	11
90	Structured Semiconductor Interfaces: Active Functionality on Light Manipulation. Proceedings of the IEEE, 2020, 108, 772-794.	16.4	16

#	Article	IF	Citations
91	Chiral plasmonics and enhanced chiral light-matter interactions. Science China: Physics, Mechanics and Astronomy, 2020, 63 , 1 .	2.0	20
92	Phonon Polaritons and Hyperbolic Response in van der Waals Materials. Advanced Optical Materials, 2020, 8, 1901393.	3.6	87
93	Transmission–Reflection-Selective Metasurface and Its Application to RCS Reduction of High-Gain Reflector Antenna. IEEE Transactions on Antennas and Propagation, 2020, 68, 1426-1435.	3.1	39
94	Trichromatic and Tripolarization-Channel Holography with Noninterleaved Dielectric Metasurface. Nano Letters, 2020, 20, 994-1002.	4.5	167
95	A Single Noninterleaved Metasurface for Highâ€Capacity and Flexible Mode Multiplexing of Higherâ€Order Poincaré Sphere Beams. Advanced Materials, 2020, 32, e1903983.	11.1	67
96	A Minimalist Singleâ€Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams. Advanced Materials, 2020, 32, e1905659.	11.1	218
97	Patterned resist on flat silver achieving saturated plasmonic colors with sub-20-nm spectral linewidth. Materials Today, 2020, 35, 99-105.	8.3	21
98	Directional Janus Metasurface. Advanced Materials, 2020, 32, e1906352.	11.1	193
99	Extraordinary Multipole Modes and Ultra-Enhanced Optical Lateral Force by Chirality. Physical Review Letters, 2020, 125, 043901.	2.9	35
100	Enhancing the modal purity of orbital angular momentum photons. APL Photonics, 2020, 5, 070802.	3.0	28
101	A Fully Phaseâ€Modulated Metasurface as An Energyâ€Controllable Circular Polarization Router. Advanced Science, 2020, 7, 2001437.	5.6	191
102	Integrated Molar Chiral Sensing Based on High- <i>Q</i> Metasurface. Nano Letters, 2020, 20, 8696-8703.	4.5	89
103	Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39, 89-97.	8.3	29
104	Tunable analog thermal material. Nature Communications, 2020, 11, 6028.	5.8	55
105	Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light: Science and Applications, 2020, 9, 137.	7.7	65
106	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nature Communications, 2020, 11, 3663.	5.8	70
107	A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal–Insulator Transition. Advanced Materials, 2020, 32, e1907071.	11.1	75
108	Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered Crl ₃ . Science Advances, 2020, 6, .	4.7	37

#	Article	IF	CITATIONS
109	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. Physical Review Letters, 2020, 125, 187403.	2.9	44
110	Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light: Science and Applications, 2020, 9, 139.	7.7	231
111	Breaking Anti-PT Symmetry by Spinning a Resonator. Nano Letters, 2020, 20, 7594-7599.	4.5	103
112	A Continuously Tunable Solid‣ike Convective Thermal Metadevice on the Reciprocal Line. Advanced Materials, 2020, 32, e2003823.	11.1	45
113	Deuterogenic Plasmonic Vortices. Nano Letters, 2020, 20, 6774-6779.	4.5	38
114	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. Nano Letters, 2020, 20, 7811-7818.	4.5	27
115	Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 2020, 11, 6404.	5.8	111
116	Loss-Assisted Metasurface at an Exceptional Point. ACS Photonics, 2020, 7, 3321-3327.	3.2	39
117	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, $11,6086$.	5.8	67
118	Millikelvin-resolved ambient thermography. Science Advances, 2020, 6, .	4.7	26
119	Reprogrammable meta-hologram for optical encryption. Nature Communications, 2020, 11, 5484.	5.8	171
120	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	4.5	16
121	Photonic Nanojet Mediated Backaction of Dielectric Microparticles. ACS Photonics, 2020, 7, 1483-1490.	3.2	23
122	Optofluidic Microengine in A Dynamic Flow Environment via Self-Induced Back-Action. ACS Photonics, 2020, 7, 1500-1507.	3.2	12
123	3Dâ€Printed Curved Metasurface with Multifunctional Wavefronts. Advanced Optical Materials, 2020, 8, 2000129.	3.6	20
124	Steering valley-polarized emission of monolayer MoS ₂ sandwiched in plasmonic antennas. Science Advances, 2020, 6, eaao0019.	4.7	47
125	Exchange Bias in van der Waals CrCl ₃ /Fe ₃ GeTe ₂ Heterostructures. Nano Letters, 2020, 20, 5030-5035.	4.5	78
126	Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.	13.7	413

#	Article	IF	Citations
127	Large enhancement of thermoelectric performance in MoS ₂ / <i>h</i> -BN heterostructure due to vacancy-induced band hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13929-13936.	3.3	34
128	Malus-metasurface-assisted polarization multiplexing. Light: Science and Applications, 2020, 9, 101.	7.7	176
129	Optical Potential-Well Array for High-Selectivity, Massive Trapping and Sorting at Nanoscale. Nano Letters, 2020, 20, 5193-5200.	4.5	47
130	Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Science Advances, 2020, 6, eaba3367.	4.7	143
131	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	23.0	78
132	Robust Optical-Levitation-Based Metrology of Nanoparticle's Position and Mass. Physical Review Letters, 2020, 124, 223603.	2.9	50
133	Ghost spintronic THz-emitter-array microscope. Light: Science and Applications, 2020, 9, 99.	7.7	82
134	Vortex 4.0 on chip. Light: Science and Applications, 2020, 9, 103.	7.7	6
135	An optically driven digital metasurface for programming electromagnetic functions. Nature Electronics, 2020, 3, 165-171.	13.1	203
136	Fano Resonance in Artificial Photonic Molecules. Advanced Optical Materials, 2020, 8, 1902153.	3.6	34
137	Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS ₂ . ACS Nano, 2020, 14, 4636-4645.	7.3	69
138	Monolayer Conveyor for Stably Trapping and Transporting Subâ€1Ânm Particles. Laser and Photonics Reviews, 2020, 14, 2000030.	4.4	17
139	Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 2020, 11, 1136.	5.8	35
140	Metantenna: When Metasurface Meets Antenna Again. IEEE Transactions on Antennas and Propagation, 2020, 68, 1332-1347.	3.1	122
141	HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H ⁺ homoeostasis. Plant Biotechnology Journal, 2020, 18, 1683-1696.	4.1	54
142	Kerkerâ€Type Intensityâ€Gradient Force of Light. Laser and Photonics Reviews, 2020, 14, 1900265.	4.4	20
143	Momentum-Topology-Induced Optical Pulling Force. Physical Review Letters, 2020, 124, 143901.	2.9	34
144	Singleâ€Layer Aberrationâ€Compensated Flat Lens for Robust Wideâ€Angle Imaging. Laser and Photonics Reviews, 2020, 14, 2000017.	4.4	33

#	Article	IF	Citations
145	High-purity orbital angular momentum states from a visible metasurface laser. Nature Photonics, 2020, 14, 498-503.	15.6	230
146	Moiré Hyperbolic Metasurfaces. Nano Letters, 2020, 20, 3217-3224.	4.5	167
147	Polarizationâ€Controlled Dualâ€Programmable Metasurfaces. Advanced Science, 2020, 7, 1903382.	5.6	112
148	Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light: Science and Applications, 2020, 9, 62.	7.7	92
149	3D Printed Metaâ€Helmet for Wideâ€Angle Thermal Camouflages. Advanced Functional Materials, 2020, 30, 2002061.	7.8	46
150	Purity and efficiency of hybrid orbital angular momentum-generating metasurfaces. Journal of Nanophotonics, 2020, 14, 1.	0.4	13
151	Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX, 2020, 1 , .	5.5	127
152	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288.	12.1	99
153	Effective medium theory for thermal scattering off rotating structures. Optics Express, 2020, 28, 25894.	1.7	25
154	On-chip trans-dimensional plasmonic router. Nanophotonics, 2020, 9, 3357-3365.	2.9	14
155	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. Research, 2020, 2020, 9085782.	2.8	40
156	Editorial on special issue "Metamaterials and Plasmonics in Asia― Nanophotonics, 2020, 9, 3045-3047.	2.9	0
157	Generation of arbitrary higher order Poincar \tilde{A} beams from a visible metasurface laser. , 2020, , .		1
158	High purity twisted light from a metasurface solid state resonator. , 2020, , .		0
159	Dual-focal metalenses based on complete decoupling of amplitude, phase, and polarization. URSI Radio Science Bulletin, 2020, 2020, 54-62.	0.2	O
160	Kerkerâ€Conditioned Dynamic Cryptographic Nanoprints. Advanced Optical Materials, 2019, 7, 1801070.	3.6	50
161	Plasmonicâ€Assisted Graphene Oxide Artificial Muscles. Advanced Materials, 2019, 31, e1806386.	11.1	134
162	Chiralityâ€Assisted Highâ€Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization. Advanced Optical Materials, 2019, 7, 1801479.	3.6	181

#	Article	IF	CITATIONS
163	Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2, 335-342.	13.1	125
164	Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nature Communications, 2019, 10, 3411.	5.8	81
165	Intelligent metasurface imager and recognizer. Light: Science and Applications, 2019, 8, 97.	7.7	225
166	Dielectric multi-momentum meta-transformer in the visible. Nature Communications, 2019, 10, 4789.	5.8	82
167	Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22959-22965.	3.3	105
168	Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Science and Applications, 2019, 8, 95.	7.7	165
169	Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications, 2019, 10, 4340.	5.8	184
170	Nanophotonic Array-Induced Dynamic Behavior for Label-Free Shape-Selective Bacteria Sieving. ACS Nano, 2019, 13, 12070-12080.	7.3	48
171	One-step green conversion of benzyl bromide to aldehydes on NaOH-modified g-C ₃ N ₄ with dioxygen under LED visible light. Catalysis Science and Technology, 2019, 9, 3270-3278.	2.1	15
172	Electromagnetic metasurfaces: from concept to applications. Science Bulletin, 2019, 64, 791-792.	4.3	6
173	Field-programmable silicon temporal cloak. Nature Communications, 2019, 10, 2726.	5.8	7
174	Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). Plant Growth Regulation, 2019, 89, 109-118.	1.8	22
175	Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides. Physical Review Applied, 2019, 11, .	1.5	4
176	Superoscillation: from physics to optical applications. Light: Science and Applications, 2019, 8, 56.	7.7	95
177	Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nature Communications, 2019, 10, 2085.	5.8	91
178	Roadmap on superoscillations. Journal of Optics (United Kingdom), 2019, 21, 053002.	1.0	111
179	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e1807849.	11.1	111
180	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. Nano Letters, 2019, 19, 3830-3837.	4.5	45

#	Article	IF	CITATIONS
181	Offâ€Axis Holography with Uniform Illumination via 3D Printed Diffractive Optical Elements. Advanced Optical Materials, 2019, 7, 1900068.	3.6	30
182	Quantum plasmonics get applied. Progress in Quantum Electronics, 2019, 65, 1-20.	3.5	70
183	Machine-learning reprogrammable metasurface imager. Nature Communications, 2019, 10, 1082.	5.8	343
184	Nanoscale Lamb wave–driven motors in nonliquid environments. Science Advances, 2019, 5, eaau8271.	4.7	30
185	Versatile total angular momentum generation using cascaded J-plates. Optics Express, 2019, 27, 7469.	1.7	39
186	Doublet Thermal Metadevice. Physical Review Applied, 2019, 11, .	1.5	52
187	Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nature Photonics, 2019, 13, 467-472.	15.6	236
188	Tunable Metasurfaces: Kerkerâ€Conditioned Dynamic Cryptographic Nanoprints (Advanced Optical) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
189	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. International Journal of Molecular Sciences, 2019, 20, 791.	1.8	15
190	Zero chiral bulk modes in 3D Weyl metamaterials. Science Bulletin, 2019, 64, 799-801.	4.3	2
191	Twisted Surface Plasmons with Spinâ€Controlled Gold Surfaces. Advanced Optical Materials, 2019, 7, 1801060.	3.6	36
192	Frequency-and-spin Multiplexed Multifunctional Metadevices. , 2019, , .		0
193	Perturbative countersurveillance metaoptics with compound nanosieves. Light: Science and Applications, 2019, 8, 101.	7.7	46
194	Plasmonic nanoparticle-film-assisted photoelectrochemical catalysis across the entire visible-NIR region. Nanoscale, 2019, 11, 23058-23064.	2.8	10
195	Rotation-Selective Moiré Magnification of Structural Color Pattern Arrays. ACS Nano, 2019, 13, 14138-14144.	7. 3	23
196	Ultrasensitive Transmissive Infrared Spectroscopy via Loss Engineering of Metallic Nanoantennas for Compact Devices. ACS Applied Materials & Interfaces, 2019, 11, 47270-47278.	4.0	52
197	Manipulation of Orbital-Angular-Momentum Spectrum Using Pinhole Plates. Physical Review Applied, 2019, 12, .	1.5	97
198	Dual-Focal Metalenses Based on Complete Decoupling of Amplitude, Phase and Polarization. , 2019, , .		O

#	Article	IF	CITATIONS
199	Upconversion superburst with sub-2 μs lifetime. Nature Nanotechnology, 2019, 14, 1110-1115.	15.6	130
200	Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. Nano Letters, 2019, 19, 1009-1014.	4.5	64
201	Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. Nano Letters, 2019, 19, 1158-1165.	4.5	94
202	Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nature Photonics, 2019, 13, 21-24.	15.6	173
203	Focus on 2D material nanophotonics. Nanotechnology, 2019, 30, 030201.	1.3	4
204	Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. ACS Nano, 2019, 13, 821-829.	7.3	40
205	Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light: Science and Applications, 2019, 8, 3.	7.7	153
206	Compact Aberrationâ€Corrected Spectrometers in the Visible Using Dispersionâ€Tailored Metasurfaces. Advanced Optical Materials, 2019, 7, 1801144.	3.6	52
207	Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics, 2019, 6, 211-220.	3.2	132
208	Thermal meta-device in analogue of zero-index photonics. Nature Materials, 2019, 18, 48-54.	13.3	172
209	Chirality-assisted three-dimensional acoustic Floquet lattices. Physical Review Research, 2019, 1, .	1.3	26
210	Photonic tractor beams: a review. Advanced Photonics, 2019, 1, 1.	6.2	59
211	Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Advanced Photonics, 2019, $1,1$.	6.2	11
212	Anti–parity-time symmetry in diffusive systems. Science, 2019, 364, 170-173.	6.0	217
213	Dynamically tunable infrared grating based on graphene-enabled phase switching of a split ring resonator [Invited]. Optical Materials Express, 2019, 9, 56.	1.6	5
214	Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. Photonics Research, 2019, 7, 311.	3.4	25
215	High-Order Exceptional Points in Diffusive Systems: Robust APT Symmetry 2 Against Perturbation and Phase Oscillation at APT Symmetry Breaking. ES Energy & Environments, 2019, , .	0.5	14
216	Frequency-and-spin multiplexed metasurface. , 2019, , .		1

#	Article	IF	CITATIONS
217	Single-Layer Metasurface with Controllable Multiwavelength Functions. Nano Letters, 2018, 18, 2420-2427.	4.5	165
218	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light: Science and Applications, 2018, 7, 17158-17158.	7.7	234
219	Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nature Communications, 2018, 9, 815.	5.8	129
220	Investigating the dynamics of excitons in monolayer WSe ₂ before and after organic super acid treatment. Nanoscale, 2018, 10, 9346-9352.	2.8	12
221	Illusion Thermotics. Advanced Materials, 2018, 30, e1707237.	11.1	216
222	Twisted Acoustics: Metasurfaceâ€Enabled Multiplexing and Demultiplexing. Advanced Materials, 2018, 30, e1800257.	11.1	134
223	Metafluidic metamaterial: a review. Advances in Physics: X, 2018, 3, 1417055.	1.5	32
224	Structured thermal surface for radiative camouflage. Nature Communications, 2018, 9, 273.	5.8	212
225	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano, 2018, 12, 1859-1867.	7.3	97
226	Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4, eaao0773.	4.7	161
227	Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. Advanced Materials, 2018, 30, e1704556.	11.1	105
228	Wavenumberâ€Splitting Metasurfaces Achieve Multichannel Diffusive Invisibility. Advanced Optical Materials, 2018, 6, 1800010.	3.6	70
229	Self-Induced Backaction Optical Pulling Force. Physical Review Letters, 2018, 120, 123901.	2.9	51
230	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light: Science and Applications, 2018, 7, 17156-17156.	7.7	97
231	Digital Metasurfaces: Lightâ€Controllable Digital Coding Metasurfaces (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870068.	5.6	4
232	More than two decades trapped. Light: Science and Applications, 2018, 7, 86.	7.7	11
233	Helicity-Induced Multifunctional Devices Based on Hybrid Metasurfaces. , 2018, , .		0
234	Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials. Applied Physics Letters, 2018, 113, .	1.5	24

#	Article	IF	CITATIONS
235	Broadband Achromatic Metasurface-Refractive Optics. Nano Letters, 2018, 18, 7801-7808.	4.5	138
236	Noninterleaved Metasurface for (2 ⁶ -1) Spin- and Wavelength-Encoded Holograms. Nano Letters, 2018, 18, 8016-8024.	4.5	187
237	Localized Selfâ€Growth of Reconfigurable Architectures Induced by a Femtosecond Laser on a Shapeâ€Memory Polymer. Advanced Materials, 2018, 30, e1803072.	11.1	55
238	Living Nanospear for Near-Field Optical Probing. ACS Nano, 2018, 12, 10703-10711.	7.3	54
239	Robust Control of a Multifrequency Metamaterial Cloak Featuring Intrinsic Harmonic Selection. Physical Review Applied, 2018, 10, .	1.5	16
240	Fullâ€Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry. Advanced Materials, 2018, 30, e1804019.	11.1	87
241	Full-space Cloud of Random Points with a Scrambling Metasurface. Light: Science and Applications, 2018, 7, 63.	7.7	112
242	Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. ACS Nano, 2018, 12, 9233-9239.	7.3	83
243	A reprogrammable multifunctional chalcogenide guided-wave lens. Nanoscale, 2018, 10, 17053-17059.	2.8	4
244	Special Issue on "Ultra-capacity Metasurfaces with Low Dimension and High Efficiency― ACS Photonics, 2018, 5, 1640-1642.	3.2	10
245	Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field. Light: Science and Applications, 2018, 7, 18003-18003.	7.7	67
246	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
247	Dynamic Janus Metasurfaces in the Visible Spectral Region. Nano Letters, 2018, 18, 4584-4589.	4.5	104
248	Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics, 2018, 12, 540-547.	15.6	255
249	Lightâ€Controllable Digital Coding Metasurfaces. Advanced Science, 2018, 5, 1801028.	5.6	136
250	High-resolution optical coherence tomography in vivo using a nano-optic endoscope. , 2018, , .		0
251	Light-programmable manipulation of DC field in Laplacian Meta-devices. Scientific Reports, 2018, 8, 12208.	1.6	4
252	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	1.7	32

#	Article	IF	Citations
253	3D Metaphotonic Nanostructures with Intrinsic Chirality. Advanced Functional Materials, 2018, 28, 1803147.	7.8	102
254	Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano, 2018, 12, 8847-8854.	7.3	142
255	Arbitrary and Independent Polarization Control In Situ via a Single Metasurface. Advanced Optical Materials, 2018, 6, 1800728.	3.6	49
256	0.2 λ ₀ Thick Adaptive Retroreflector Made of Spin‣ocked Metasurface. Advanced Materials, 2018, 30, e1802721.	11.1	58
257	Full Modeling, Loss Reduction, and Mutual Coupling Control of Spoof Surface Plasmon-Based Meander Slow Wave Transmission Lines. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3764-3772.	2.9	40
258	Wavefront manipulation by acoustic metasurfaces: from physics and applications. Nanophotonics, 2018, 7, 1191-1205.	2.9	42
259	Efficient and Tunable Photoinduced Honeycomb Lattice in an Atomic Ensemble. Laser and Photonics Reviews, 2018, 12, 1800050.	4.4	20
260	Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints. Research, 2018, 2018, 8109054.	2.8	60
261	Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging. Optics Letters, 2018, 43, 5615.	1.7	8
262	Giant intrinsic chiro-optical activity in planar nanostructures. , 2018, , .		3
263	Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nature Communications, 2017, 8, 13906.	5.8	132
264	A Reconfigurable Active Huygens' Metalens. Advanced Materials, 2017, 29, 1606422.	11.1	470
265	Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces. Scientific Reports, 2017, 7, 43886.	1.6	79
266	Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Science and Applications, 2017, 6, e16204-e16204.	7.7	68
267	Highly radiative symmetric plasmonic leaky wave antenna. , 2017, , .		2
268	Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy. Nanotechnology, 2017, 28, 264001.	1.3	17
269	Chip-Scale Plasmonic Sum Frequency Generation. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	4
270	All-Optical Chirality-Sensitive Sorting <i>via</i> Reversible Lateral Forces in Interference Fields. ACS Nano, 2017, 11, 4292-4300.	7.3	99

#	Article	IF	CITATIONS
271	Recent advances in the spin Hall effect of light. Reports on Progress in Physics, 2017, 80, 066401.	8.1	360
272	A Single-Layered Spoof-Plasmon-Mode Leaky Wave Antenna With Consistent Gain. IEEE Transactions on Antennas and Propagation, 2017, 65, 681-687.	3.1	126
273	A Supercritical Lens Optical Labelâ€Free Microscopy: Subâ€Diffraction Resolution and Ultraâ€Long Working Distance. Advanced Materials, 2017, 29, 1602721.	11.1	141
274	Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light: Science and Applications, 2017, 6, e17039-e17039.	7.7	441
275	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
276	Three-dimensional supercritical resolved light-induced magnetic holography. Science Advances, 2017, 3, e1701398.	4.7	46
277	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. ACS Photonics, 2017, 4, 3055-3062.	3.2	27
278	Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light. ACS Nano, 2017, 11, 9382-9389.	7.3	157
279	Intrinsically shaping the focal behavior with multi-ring Bessel-Gaussian beam. Applied Physics Letters, 2017, 111, 031103.	1.5	8
280	Pulling cylindrical particles using a soft-nonparaxial tractor beam. Scientific Reports, 2017, 7, 652.	1.6	14
281	Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications, 2017, 8, 197.	5. 8	747
282	Vortex generation reaches a new plateau. Science, 2017, 357, 645-645.	6.0	50
283	Non-diffractive tractor beams. , 2017, , .		0
284	Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. Photonics Research, 2017, 5, 676.	3.4	27
285	Conjugate gradient method for phase retrieval based on the Wirtinger derivative. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 708.	0.8	13
286	Manipulation of light-matter interaction in a disorder gold nanorod assembly for optical data storage. , 2017, , .		0
287	Ultrathin Metalens and Three-Dimensional Optical Holography Using Metasurfaces. , 2017, , 91-126.		0
288	Actively Tunable Visible Surface Plasmons in Bi ₂ Te ₃ and their Energyâ€Harvesting Applications. Advanced Materials, 2016, 28, 3138-3144.	11.1	65

#	Article	IF	CITATIONS
289	Visibleâ€Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Advanced Materials, 2016, 28, 2533-2539.	11.1	387
290	Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Applied Physics Letters, 2016, 108, .	1.5	105
291	Localized surface plasmon resonance in graphene nanomesh with Au nanostructures. Applied Physics Letters, 2016, 109, 041106.	1.5	10
292	Evanescent vortex: Optical subwavelength spanner. Applied Physics Letters, 2016, 109, .	1.5	20
293	Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields. Journal of Optics (United Kingdom), 2016, 18, 044003.	1.0	51
294	Anomalous Shift Behaviors in the Photoluminescence of Dolmen-Like Plasmonic Nanostructures. ACS Photonics, 2016, 3, 979-984.	3.2	22
295	Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution. ACS Photonics, 2016, 3, 1847-1853.	3.2	24
296	Low dimensional metasurface., 2016,,.		0
297	Geometric phase gradient and spin Hall effect of light. Proceedings of SPIE, 2016, , .	0.8	0
298	Highly efficient plasmon excitation in graphene-Bi_2Te_3 heterostructure. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1842.	0.9	16
299	Shaping 3D Path of Electromagnetic Waves Using Gradientâ€Refractiveâ€Index Metamaterials. Advanced Science, 2016, 3, 1600022.	5.6	26
300	Low-Loss Spoof Surface Plasmon Slow-Wave Transmission Lines With Compact Transition and High Isolation. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3078-3086.	2.9	124
301	Efficient Excitation of Multiple Plasmonic Modes on Three-Dimensional Graphene: An Unexplored Dimension. ACS Photonics, 2016, 3, 1986-1992.	3.2	42
302	Controlling Lateral Fano Interference Optical Force with Au–Ge2Sb2Te5Hybrid Nanostructure. ACS Photonics, 2016, 3, 1934-1942.	3.2	31
303	Cloaking the magnons. Physical Review B, 2016, 93, .	1.1	3
304	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	5.8	244
305	Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications, 2016, 7, 11930.	5.8	421
306	Spoof Surface Plasmon-based leaky wave antennas. , 2016, , .		5

#	Article	IF	Citations
307	Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 2016, 4, 818-833.	3.6	306
308	Silicon multiâ€metaâ€holograms for the broadband visible light. Laser and Photonics Reviews, 2016, 10, 500-509.	4.4	181
309	Largeâ€Area Graphene Nanodot Array for Plasmonâ€Enhanced Infrared Spectroscopy. Small, 2016, 12, 1302-1308.	5 . 2	32
310	Flat Helical Nanosieves. Advanced Functional Materials, 2016, 26, 5255-5262.	7.8	64
311	Spoof Plasmon-Based Slow-Wave Excitation ofÂDielectric Resonator Antennas. IEEE Transactions on Antennas and Propagation, 2016, 64, 2094-2099.	3.1	91
312	Fano resonant Ge ₂ Sb ₂ Te ₅ nanoparticles realize switchable lateral optical force. Nanoscale, 2016, 8, 5657-5666.	2.8	28
313	Multiband Switchable Terahertz Quarter-Wave Plates via Phase-Change Metasurfaces. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	34
314	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Science Advances, 2016, 2, e1501168.	4.7	278
315	On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 2016, 8, 2227-2233.	2.8	76
316	Wavefront Manipulation of Harmonic Generations via Nonlinear Metasurface., 2016,,.		0
317	Temporal Superoscillatory Pulse Generation. , 2016, , .		0
318	Characterization of Ultrafast Pulse by Temporal Superoscillatory Pulse. , 2016, , .		0
319	Design and modeling of low-loss symmetric slow-wave transmission lines. , 2015, , .		3
320	Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. Advanced Materials, 2015, 27, 7752-7758.	11.1	202
321	Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 2015, 3, 1201-1206.	3.6	203
322	Broadband spinâ€controlled focusing via logarithmicâ€spiral nanoslits of varying width. Laser and Photonics Reviews, 2015, 9, 674-681.	4.4	17
323	Switchable self-defocusing and focusing in nearly isotropic photonic crystals via enhanced inverse diffraction. Physical Review A, 2015, 91, .	1.0	6
324	Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface. Scientific Reports, 2015, 5, 15020.	1.6	238

#	Article	IF	CITATIONS
325	An Optically Controllable Transformationâ€dc Illusion Device. Advanced Materials, 2015, 27, 4628-4633.	11.1	22
326	Design and Modeling of Spoof Surface Plasmon Modes-Based Microwave Slow-Wave Transmission Line. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1817-1825.	2.9	260
327	Guide-wave Photonic Pulling Force Using One-way Photonic Chiral Edge States. , 2015, , .		2
328	Ultrathin metasurface based on phase discontinuity with maximal cross-polarization efficiency. , 2015,		1
329	Ultrathin Pancharatnam–Berry Metasurface with Maximal Crossâ€Polarization Efficiency. Advanced Materials, 2015, 27, 1195-1200.	11.1	431
330	Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	21
331	Acoustic cloaking by extraordinary sound transmission. Journal of Applied Physics, 2015, 117, .	1.1	17
332	Manipulating Steady Heat Conduction by Sensu-shaped Thermal Metamaterials. Scientific Reports, 2015, 5, 10242.	1.6	65
333	Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays. Nanoscale, 2015, 7, 12018-12022.	2.8	32
334	Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light. Scientific Reports, 2015, 5, 9977.	1.6	151
335	Color generation <i>via</i> subwavelength plasmonic nanostructures. Nanoscale, 2015, 7, 6409-6419.	2.8	262
336	Enabling low amounts of YAG:Ce ³⁺ to convert blue into white light with plasmonic Au nanoparticles. Nanoscale, 2015, 7, 10350-10356.	2.8	28
337	Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nature Communications, 2015, 6, 7059.	5.8	154
338	An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. Optics Express, 2015, 23, 11114.	1.7	145
339	Analysis of mid-infrared lasing in active random media. Optics Express, 2015, 23, 12286.	1.7	5
340	Radiation pressure of active dispersive chiral slabs. Optics Express, 2015, 23, 16546.	1.7	37
341	Physical mechanisms for tuning the nonlinear effects in photonic crystals. Optics Express, 2015, 23, 19885.	1.7	7
342	Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light: Science and Applications, 2015, 4, e278-e278.	7.7	78

#	Article	IF	CITATIONS
343	Multi-foci metalens for spin and orbital angular momentum interaction. Proceedings of SPIE, 2015, , .	0.8	O
344	Interplay of Optical Force and Ray-Optic Behavior between Luneburg Lenses. ACS Photonics, 2015, 2, 1384-1390.	3.2	16
345	Simplified superscatterers with homogeneous and isotropic anti-vacuum materials. , 2015, , .		0
346	Visible Surface Plasmon Modes in Single Bi ₂ Te ₃ Nanoplate. Nano Letters, 2015, 15, 8331-8335.	4.5	71
347	Unveiling the correlation between nonâ€diffracting tractor beam and its singularity in Poynting vector. Laser and Photonics Reviews, 2015, 9, 75-82.	4.4	52
348	Application of transformation electromagnetics for omnidirectional emission. , 2014, , .		0
349	GENERATION OF OPTICAL VORTEX BEAMS BY COMPACT STRUCTURES. Journal of Molecular and Engineering Materials, 2014, 02, 1440013.	0.9	15
350	Metasurface for three-dimensional optical holography. , 2014, , .		1
351	Publisher's Note: Pulling extremely anisotropic lossy particles using light without intensity gradient [Phys. Rev. A 90 , 053815 (2014)]. Physical Review A, 2014, 90, .	1.0	1
352	Publisher's Note: Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission [Phys. Rev. B 88 , 205405 (2013)]. Physical Review B, 2014, 90, .	1.1	0
353	Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. Laser and Photonics Reviews, 2014, 8, 743-749.	4.4	19
354	Manipulating DC Currents with Bilayer Bulk Natural Materials. Advanced Materials, 2014, 26, 3478-3483.	11.1	68
355	Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light. Optics Letters, 2014, 39, 630.	1.7	41
356	Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials. Advanced Materials, 2014, 26, 1731-1734.	11,1	362
357	Direct excitation of dark plasmonic resonances under visible light at normal incidence. Nanoscale, 2014, 6, 2106-2111.	2.8	16
358	Experimental Demonstration of a Bilayer Thermal Cloak. Physical Review Letters, 2014, 112, 054302.	2.9	456
359	Three-dimensional plasmonic stereoscopic prints in full colour. Nature Communications, 2014, 5, 5361.	5.8	269
360	Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates. Advanced Optical Materials, 2014, 2, 1193-1198.	3.6	50

#	Article	IF	CITATIONS
361	Pulling extremely anisotropic lossy particles using light without intensity gradient. Physical Review A, 2014, 90, .	1.0	24
362	Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale, 2014, 6, 12303-12309.	2.8	43
363	Engineering light-matter interaction for emerging optical manipulation applications. Nanophotonics, 2014, 3, 181-201.	2.9	42
364	Unveiling the Correlation between Nanometer-Thick Molecular Monolayer Sensitivity and Near-Field Enhancement and Localization in Coupled Plasmonic Oligomers. ACS Nano, 2014, 8, 9188-9198.	7.3	50
365	Tracing optical force fields within graded-index media. New Journal of Physics, 2014, 16, 053035.	1.2	18
366	Coupling effect of spiral-shaped terahertz metamaterials for tunable electromagnetic response. Applied Physics A: Materials Science and Processing, 2014, 115, 25-29.	1.1	15
367	Optimization-free superoscillatory lens using phase and amplitude masks. Laser and Photonics Reviews, 2014, 8, 152-157.	4.4	149
368	Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Letters, 2014, 14, 4023-4029.	4.5	501
369	Manipulation of acoustic focusing with an active and configurable planar metasurface transducer. Scientific Reports, 2014, 4, 6257.	1.6	81
370	Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures. Scientific Reports, 2014, 4, 5537.	1.6	96
371	Linear momentum increase and negative optical forces at dielectric interface. Nature Photonics, 2013, 7, 787-790.	15.6	137
372	Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy and Environmental Science, 2013, 6, 3537.	15.6	121
373	Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method. Laser Physics Letters, 2013, 10, 065004.	0.6	53
374	Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nanoscale, 2013, 5, 3373.	2.8	36
375	Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. Advanced Functional Materials, 2013, 23, 4028-4034.	7.8	106
376	Tailoring photonic forces on a magnetodielectric nanoparticle with a fluctuating optical source. Physical Review A, 2013, 88, .	1.0	12
377	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. Physical Review B, 2013, 88, .	1.1	46
378	Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 2013, 4,	5.8	1,103

#	Article	IF	CITATIONS
379	Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi><mml:mi>C</mml:mi>Resonator Metamaterials. Physical Review Letters, 2013, 111, 133901.</mml:math>	2.9	38
380	Electromagnetic Scattering by a Gyrotropic-Coated Conducting Sphere Illuminated From Arbitrary Spatial Angles. IEEE Transactions on Antennas and Propagation, 2013, 61, 3381-3386.	3.1	7
381	Reversible Threeâ€Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens. Advanced Optical Materials, 2013, 1, 517-521.	3.6	60
382	Macroscopic broadband optical escalator with force-loaded transformation optics. Optics Express, 2013, 21, 796.	1.7	5
383	Phase-preserved optical elevator. Optics Express, 2013, 21, 6650.	1.7	4
384	Broadband Allâ€Dielectric Magnifying Lens for Farâ€Field Highâ€Resolution Imaging. Advanced Materials, 2013, 25, 6963-6968.	11.1	85
385	Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization. Scientific Reports, 2013, 3, 1593.	1.6	190
386	Microâ€Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition. IET Radar, Sonar and Navigation, 2013, 7, 914-924.	0.9	45
387	Redirection of sound waves using acoustic metasurface. Applied Physics Letters, 2013, 103, .	1.5	136
388	Micro-motion feature extraction of target in inverse synthetic aperture radar imaging with sparse aperture. Journal of Electromagnetic Waves and Applications, 2013, 27, 1841-1849.	1.0	2
389	Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection. Scientific Reports, 2013, 3, 2537.	1.6	145
390	Miniaturized on-chip passive devices based on self-rolled-up SiN $\langle inf \rangle x < /inf \rangle$ nanomembrane inductive tube. , 2013, , .		2
391	Exploiting design freedom in biaxial dielectrics to enable spatially overlapping optical instruments. Scientific Reports, 2013, 3, 2055.	1.6	2
392	FINITE-BOUNDARY BOWTIE APERTURE ANTENNA FOR TRAPPING NANOPARTICLES. Progress in Electromagnetics Research, 2013, 136, 17-27.	1.6	4
393	Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Optics Letters, 2012, 37, 4955.	1.7	38
394	Gradient magnifier lens with homogeneous isotropic dielectrics for subwavelength super-imaging, , 2012, , .		0
395	Ultrahigh-contrast-ratio silicon Fano diode. Physical Review A, 2012, 85, .	1.0	64
396	Asymmetrically coupled bus with tunable ring resonators for multiple functionalities: Fano resonance, asymmetrical transmission, and wavelength shifting., 2012,,.		0

#	Article	IF	CITATIONS
397	Graphene-based photonic crystal to steer giant Faraday rotation. Applied Physics Letters, 2012, 100, .	1.5	47
398	Material-Independent and Size-Independent Tractor Beams for Dipole Objects. Physical Review Letters, 2012, 109, 023902.	2.9	73
399	Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3, 1198.	5.8	935
400	Photorealistic rendering of a graded negative-index metamaterial magnifier. New Journal of Physics, 2012, 14, 033024.	1.2	12
401	Diameter-bandwidth product limitation of isolated-object cloaking. Physical Review A, 2012, 86, .	1.0	34
402	Rigorous Derivation and Fast Solution of Spatial-Domain Green's Functions for Uniaxial Anisotropic Multilayers Using Modified Fast Hankel Transform Method. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 205-217.	2.9	17
403	Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach. IEEE Transactions on Antennas and Propagation, 2011, 59, 4364-4368.	3.1	21
404	Fano resonance in 3-D compound spirals: Chiral quality, extraordinary transmission and polarization gap. , 2011 , , .		0
405	Single Gradientless Light Beam Drags Particles as Tractor Beams. Physical Review Letters, 2011, 107, 203601.	2.9	262
406	Gain-assisted transformation optics. Optics Express, 2011, 19, 8610.		
	Gain desired didition indican optics. Space Express, 2011, 17, 0010.	1.7	5
407	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020.	1.7	26
407	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides		
	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Optics Letters,	1.7	26
408	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Optics Letters, 2011, 36, 181. Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. IEEE Geoscience and	1.7	26
408	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Optics Letters, 2011, 36, 181. Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 88-92.	1.7	26 46 13
408	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Optics Letters, 2011, 36, 181. Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 88-92. Non-paraxial beam to push and pull microparticles., 2011,,.	1.7 1.7 1.4	26 46 13
408 409 410 411	Homogeneous and isotropic bends to tunnel waves through multiple different/equal waveguides along arbitrary directions. Optics Express, 2011, 19, 13020. Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials. Optics Letters, 2011, 36, 181. Focusing of Tandem Bistatic-Configuration Data With Range Migration Algorithm. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 88-92. Non-paraxial beam to push and pull microparticles., 2011,, Fano resonance of three-dimensional spiral photonic crystals: Paradoxical transmission and polarization gap. Applied Physics Letters, 2011, 98, 081116. Mie series for electromagnetic scattering of chiral metamaterials sphere. Journal of Systems	1.7 1.7 1.4	26 46 13 0

#	Article	lF	CITATIONS
415	Motion Parameter Estimation in the SAR System With Low PRF Sampling. IEEE Geoscience and Remote Sensing Letters, 2010, 7, 450-454.	1.4	39
416	The general two-dimensional open-closed cloak with tunable inherent discontinuity and directional communication. Applied Physics Letters, 2010, 97, 124104.	1.5	13
417	A novel transformation for exploring open cloaks. , 2010, , .		0
418	Micro-Doppler Effect Analysis and Feature Extraction in ISAR Imaging With Stepped-Frequency Chirp Signals. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2087-2098.	2.7	110
419	Simulation of full responses of a triaxial induction tool in a homogeneous biaxial anisotropic formation. Geophysics, 2010, 75, E101-E114.	1.4	23
420	An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation. Journal of Optics (United Kingdom), 2010, 12, 095103.	1.0	27
421	Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks. Optics Express, 2010, 18, 13038.	1.7	31
422	Distributed external cloak without embedded antiobjects. Optics Letters, 2010, 35, 2642.	1.7	29
423	Inverse design mechanism of cylindrical cloaks without knowledge of the required coordinate transformation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1079.	0.8	17
424	Adaptive two-step calibration for high-resolution and wide-swath SAR imaging. IET Radar, Sonar and Navigation, 2010, 4, 548.	0.9	58
425	Experimental research of unsupervised Cameron/maximum-likelihood classification method for fully polarimetric synthetic aperture radar data. IET Radar, Sonar and Navigation, 2010, 4, 85.	0.9	6
426	Time–frequency imaging algorithm for high-speed spinning targets in two dimensions. IET Radar, Sonar and Navigation, 2010, 4, 806.	0.9	19
427	Creating Rigorous Open Cloaks. Journal of Electromagnetic Waves and Applications, 2010, 24, 1839-1847.	1.0	16
428	SAR imaging and Doppler ambiguity removal with distributed microsatellite arrays. International Journal of Remote Sensing, 2010, 31, 6441-6458.	1.3	2
429	Transformation-based spherical cloaks designed by an implicit transformation-independent method: theory and optimization. New Journal of Physics, 2009, 11, 113001.	1.2	32
430	Scattering characteristics from conducting cylinder with reconstructing electromagnetic cloaking layers. , 2009, , .		1
431	Azimuth preprocessing for monostatic and bistatic spotlight synthetic aperture radar maging based on spectral analysis convolution. Journal of Applied Remote Sensing, 2009, 3, 033565.	0.6	0
432	Two-Dimensional Spectrum Matched Filter Banks for High-Speed Spinning-Target Three-Dimensional ISAR Imaging. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 368-372.	1.4	12

#	Article	IF	Citations
433	Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 567-571.	1.4	225
434	Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks. Physical Review E, 2009, 80, 016604.	0.8	55
435	Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. Optics Express, 2009, 17, 13467.	1.7	53
436	Spherical cloaking with homogeneous isotropic multilayered structures. Physical Review E, 2009, 79, 047602.	0.8	115
437	Range-time backprojection for 3D shape estimation of small space debris. , 2009, , .		1
438	Exact Solution to Electromagnetic Scattering by an Impedance Sphere Coated With a Uniaxial Anisotropic Layer. IEEE Transactions on Antennas and Propagation, 2009, 57, 572-576.	3.1	36
439	Unambiguous Reconstruction and High-Resolution Imaging for Multiple-Channel SAR and Airborne Experiment Results. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 102-106.	1.4	25
440	Enhanced scattering efficiencies in spherical particles withÂweaklyÂdissipatingÂanisotropic materials. Applied Physics A: Materials Science and Processing, 2008, 92, 773-776.	1.1	32
441	Elliptically shaped ultraâ€wideband patch antenna with bandâ€notch features. Microwave and Optical Technology Letters, 2008, 50, 736-738.	0.9	31
442	Chiral nihility effects on energy flow in chiral materials. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 55.	0.8	67
443	Peculiarities in light scattering by spherical particles with radial anisotropy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1623.	0.8	32
444	Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction, and prediction. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1728.	0.9	37
445	Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. Optics Express, 2008, 16, 14390.	1.7	120
446	What we expect from weakly dissipating materials at the range of plasmon resonance frequencies. , 2008, , .		1
447	Full-wave analysis of extraordinary backscattering by a layered plasmonic nanosphere. Journal of Applied Physics, 2008, 104, 034909.	1.1	6
448	Comment on $\hat{a} \in \mathbb{R}$ Negative refractive index in gyrotropically magnetoelectric media $\hat{a} \in \mathbb{R}$ Physical Review B, 2007, 75, .	1.1	9
449	Routes to left-handed materials by magnetoelectric couplings. Physical Review B, 2007, 75, .	1.1	50
450	Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies. Physical Review E, 2007, 75, 026609.	0.8	78

#	Article	IF	CITATIONS
451	Eigenfunctional representation of dyadic Green's functions in multilayered gyrotropic chiral media. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 5751-5766.	0.7	11
452	On the Integral Identities Consisting of Two Spherical Bessel Functions. IEEE Transactions on Antennas and Propagation, 2007, 55, 240-244.	3.1	4
453	Backward waves in magnetoelectrically chiral media: Propagation, impedance, and negative refraction. Physical Review B, 2007, 75, .	1.1	61
454	Modified Spherical Wave Functions With Anisotropy Ratio: Application to the Analysis of Scattering by Multilayered Anisotropic Shells. IEEE Transactions on Antennas and Propagation, 2007, 55, 3515-3523.	3.1	54
455	Functional Materials with Magnetoelectric Couplings and Gyrotropy. , 2007, , .		0
456	Scattering properties of electromagnetic waves in a multilayered cylinder filled with double negative and positive materials. Radio Science, 2007, 42, n/a-n/a.	0.8	15
457	Sensitivity analysis of iterative adjoint technique for microstrip circuits optimization. Microwave and Optical Technology Letters, 2007, 49, 607-609.	0.9	0
458	Hybrid shaped ultraâ€wideband antenna. Microwave and Optical Technology Letters, 2007, 49, 2412-2415.	0.9	14
459	Electromagnetic Scattering Properties in a Multilayered Metamaterial Cylinder. IEICE Transactions on Communications, 2007, E90-B, 2423-2429.	0.4	15
460	Isotropic and gyrotropic chiral composite materials: dispersion and negative refractive index. , 2006, , .		1
461	Homogenization of 3-D Periodic Bianisotropic Metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 3893-3898.	2.9	49
462	On the constitutive relations of G-chiral media and the possibility to realize negative-index media. Microwave and Optical Technology Letters, 2006, 48, 2534-2538.	0.9	18
463	Properties of Faraday chiral media: Green dyadics and negative refraction. Physical Review B, 2006, 74, .	1.1	19
464	Field Representations in General Gyrotropic Media in Spherical Coordinates. IEEE Antennas and Wireless Propagation Letters, 2005, 4, 467-470.	2.4	23
465	Representations of green's dyadics in multilayered general faraday chiral media. , 0, , .		0
466	Field representations in general gyrotropic media in spherical coordinates. , 0, , .		0
467	Eigenfunctional Representation of Dyadic Green $\$8217$; s Functions for Cylindrically Multilayered Gyrotropic Faraday Chiral Media., 0 ,,.		0
468	A Novel Technique for Solving EM Problems of Multilayered Anisotropic Spheres: A Modified VWF Method. , 0, , .		0

#	Article	IF	CITATIONS
469	Electromagnetic scattering by 3-D general anisotropic objects: a Hertz-Debye potential formulation. , 0, , .		O
470	Creating Rigorous Open Cloaks. , 0, .		1
471	Bound states in the continuum on flatbands of symmetry-broken photonic crystal slabs. Journal of Optics (United Kingdom), 0, , .	1.0	1