Charles Joel McManus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Quantitation of Yeast uORF Regulatory Impacts Using FACS-uORF. Methods in Molecular Biology, 2022, 2404, 331-351.	0.9	2
2	Multiplexed Analysis of Human uORF Regulatory Functions During the ISR Using PoLib-Seq. Methods in Molecular Biology, 2022, 2428, 41-62.	0.9	1
3	Control of translation by eukaryotic mRNA transcript leaders—Insights from highâ€ŧhroughput assays and computational modeling. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1623.	6.4	9
4	uORF-seqr: A Machine Learning-Based Approach to the Identification of Upstream Open Reading Frames in Yeast. Methods in Molecular Biology, 2021, 2252, 313-329.	0.9	3
5	Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genetics, 2021, 17, e1009634.	3.5	7
6	Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genetics, 2020, 16, e1008582.	3.5	38
7	Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Research, 2019, 47, 9358-9367.	14.5	46
8	Circuit diversification in a biofilm regulatory network. PLoS Pathogens, 2019, 15, e1007787.	4.7	79
9	Structural analyses of NEAT1 IncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Research, 2018, 46, 3742-3752.	14.5	125
10	Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Research, 2018, 28, 214-222.	5.5	93
11	Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data. Methods, 2018, 137, 67-70.	3.8	3
12	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Journal of Computational Biology, 2017, 24, 486-500.	1.6	22
13	Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS ONE, 2017, 12, e0180517.	2.5	38
14	Isoform-level ribosome occupancy estimation guided by transcript abundance with Ribomap. Bioinformatics, 2016, 32, 1880-1882.	4.1	31
15	Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling. Methods in Molecular Biology, 2016, 1358, 71-97.	0.9	9
16	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Lecture Notes in Computer Science, 2016, , 37-52.	1.3	3
17	Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the <i>Drosophila</i> X Chromosome. Molecular Biology and Evolution, 2015, 32, 2605-2615.	8.9	35
18	Mod-seq. Methods in Enzymology, 2015, 558, 125-152.	1.0	9

#	Article	IF	CITATIONS
19	Next-generation analysis of gene expression regulation – comparing the roles of synthesis and degradation. Molecular BioSystems, 2015, 11, 2680-2689.	2.9	82
20	DNA copy number evolution in Drosophila cell lines. Genome Biology, 2014, 15, R70.	8.8	96
21	Tempo and mode of regulatory evolution in <i>Drosophila</i> . Genome Research, 2014, 24, 797-808.	5.5	177
22	Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development (Cambridge), 2014, 141, 950-961.	2.5	82
23	Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Research, 2014, 24, 422-430.	5.5	195
24	Evolution of splicing regulatory networks in <i>Drosophila</i> . Genome Research, 2014, 24, 786-796.	5.5	34
25	Mod-seq: high-throughput sequencing for chemical probing of RNA structure. Rna, 2014, 20, 713-720.	3.5	167
26	Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in <i>Saccharomyces cerevisiae</i> . Rna, 2013, 19, 1639-1647.	3.5	23
27	Genomic Imprinting Absent in Drosophila melanogaster Adult Females. Cell Reports, 2012, 2, 69-75.	6.4	44
28	RNA structure and the mechanisms of alternative splicing. Current Opinion in Genetics and Development, 2011, 21, 373-379.	3.3	222
29	Competing RNA secondary structures are required for mutually exclusive splicing of the <i>Dscam</i> exon 6 cluster. Rna, 2011, 17, 222-229.	3.5	54
30	Regulatory divergence in <i>Drosophila</i> revealed by mRNA-seq. Genome Research, 2010, 20, 816-825.	5.5	385
31	Global analysis of <i>trans</i> -splicing in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12975-12979.	7.1	92
32	Getting the Message Out. Molecular Cell, 2008, 31, 4-6.	9.7	0
33	A dynamic bulge in the U6 RNA internal stem–loop functions in spliceosome assembly and activation. Rna, 2007, 13, 2252-2265.	3.5	25
34	U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nature Structural and Molecular Biology, 2004, 11, 1237-1242.	8.2	123