Li-Qun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the novel <i>HLAâ€DQB1*05:155</i> allele by sequencingâ€based typing. Hla, 2017, 90, 377-378.	0.6	4
2	Characterization of the novel <i>HLA *03:02:17</i> allele by sequencingâ€based typing. Hla, 2018, 92, 54-55.	0.6	4
3	Characterization of the novel <i>HLAâ€DQB1*06:02:29</i> allele by sequencingâ€based typing. Hla, 2018, 92, 184-185.	0.6	4
4	Identification of the novel <i>HLAâ€C*07:02:107</i> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2019, 94, 388-389.	0.6	4
5	Characterization of the novel <i>HLAâ€A*02:07:10</i> allele by sequencingâ€based typing. Hla, 2017, 90, 361-362.	0.6	3
6	Characterization of the novel <i>HLAâ€DRB1*13:241</i> allele by sequencingâ€based typing. Hla, 2017, 90, 380-381.	0.6	3
7	A novel <i>HLAâ€DRB1*07</i> allele, <i>HLAâ€DRB1*07:01:22</i> , identified in a Chinese individual. Hla, 2018, 91, 143-144.	0.6	3
8	Characterization of the novel <i>HLAâ€ÐQB1*03:279</i> allele by sequencingâ€based typing. Hla, 2018, 92, 63-64.	0.6	3
9	Characterization of the novel <i>HLA *07:613</i> allele by sequencingâ€based typing. Hla, 2018, 92, 106-107.	0.6	3
10	Characterization of the novel <i>HLAâ€B*40:366</i> allele by sequencingâ€based typing. Hla, 2018, 92, 102-103.	0.6	3
11	Characterization of the novel <i>HLAâ€B*40:01:51</i> allele by sequencingâ€based typing. Hla, 2018, 92, 177-178.	0.6	3
12	Identification of the novel <scp><i>HLA *15:219</i></scp> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2020, 96, 741-742.	0.6	3
13	Identification of the novel <scp><i>HLAâ€A*30:171</i></scp> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2020, 96, 721-722.	0.6	3
14	Characterization of the novel <i>HLAâ€B*48:43</i> allele by sequencingâ€based typing. Hla, 2018, 91, 139-140.	0.6	2
15	Characterization of the novel HLAâ€ÐQB1*03:01:45 allele by sequencingâ€based typing. Hla, 2019, 93, 136-137.	0.6	2
16	Identification of the novel <i>HLAâ€A*30:01:13</i> allele in a volunteer donor from the China Marrow Donor Program. Hla, 2019, 94, 370-371.	0.6	2
17	Characterization of the novel HLAâ€DRB1*11:245 allele by sequencingâ€based typing. Hla, 2019, 93, 133-134.	0.6	2
18	Systemic RNA oxidation can be used as a biomarker of infection in challenged with <i>Vibrio parahaemolyticus</i> . Free Radical Research, 2021, 55, 41-52.	3.3	0

#	Article	IF	CITATIONS
19	Characterization of a novel HLA-A*11:335 allele resulting from a rare interlocus recombination involving HLA-A*11:01:01:01/126 and HLA-H*02:07/14/18 alleles with nanopore sequencing, in a volunteer from the China Marrow Donor Program. BMC Medical Genomics, 2022, 15, 58.	1.5	0