Marcos S Toledo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the glucosylceramide biosynthetic pathway inAspergillus nidulansandAspergillus fumigatusby inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Letters, 2002, 525, 59-64.	2.8	120
2	Characterization of Sphingolipids from Mycopathogens:  Factors Correlating with Expression of 2-Hydroxy Fatty Acyl (E)-Δ3-Unsaturation in Cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry, 1999, 38, 7294-7306.	2.5	103
3	Effect of Ganglioside and Tetraspanins in Microdomains on Interaction of Integrins with Fibroblast Growth Factor Receptor. Journal of Biological Chemistry, 2005, 280, 16227-16234.	3.4	98
4	Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions. , 2000, 14, 551-563.		93
5	Sphingosine-dependent apoptosis: A unified concept based on multiple mechanisms operating in concert. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14788-14793.	7.1	83
6	Structure Elucidation of Sphingolipids from the MycopathogenParacoccidioides brasiliensis:Â An Immunodominant β-Galactofuranose Residue Is Carried by a Novel Glycosylinositol Phosphorylceramide Antigenâ€. Biochemistry, 1998, 37, 8764-8775.	2.5	82
7	Cell Growth Regulation through GM3-enriched Microdomain (Glycosynapse) in Human Lung Embryonal Fibroblast WI38 and Its Oncogenic Transformant VA13. Journal of Biological Chemistry, 2004, 279, 34655-34664.	3.4	75
8	A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: A contribution to characterize the hazard. Water Research, 2018, 132, 361-370.	11.3	59
9	A monoclonal antibody directed to terminal residue of β-galactofuranose of a glycolipid antigen isolated from Paracoccidioides brasiliensis: cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology, 1997, 7, 463-468.	2.5	52
10	Phospholipase-D activity and inflammatory response induced by brown spider dermonecrotic toxin: Endothelial cell membrane phospholipids as targets for toxicity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 84-96.	2.4	52
11	Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Â3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology, 2001, 11, 113-124.	2.5	51
12	Dimorphic expression of cerebrosides in the mycopathogen Sporothrix schenckii. Journal of Lipid Research, 2000, 41, 797-806.	4.2	51
13	Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Frontiers in Cellular and Infection Microbiology, 2014, 4, 138.	3.9	45
14	Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus. Journal of Lipid Research, 2007, 48, 1801-1824.	4.2	40
15	Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li+ adduct ions. Rapid Communications in Mass Spectrometry, 2001, 15, 2240-2258.	1.5	38
16	Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 362-369.	2.4	38
17	Role of β- d -Galactofuranose in Leishmania major Macrophage Invasion. Infection and Immunity, 2002, 70, 6592-6596.	2.2	35
18	Structural Characterization of a New Galactofuranose-Containing Glycolipid Antigen ofParacoccidioides brasiliensis. Biochemical and Biophysical Research Communications, 1996, 222, 639-645.	2.1	31

MARCOS S TOLEDO

#	Article	IF	CITATIONS
19	Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes and Infection, 2008, 10, 540-547.	1.9	30
20	Structure Elucidation of Sphingolipids from the Mycopathogen Sporothrix schenckii: Identification of Novel Glycosylinositol Phosphorylceramides with Core Manα1→6Ins Linkage. Biochemical and Biophysical Research Communications, 2001, 280, 19-24.	2.1	29
21	Sphingolipids of the mycopathogenSporothrix schenckii: identification of a glycosylinositol phosphorylceramide with novel core GlcNH2α1→2Ins motif. FEBS Letters, 2001, 493, 50-56.	2.8	27
22	Modulation of the type I hypersensitivity late phase reaction to OVA by Propionibacterium acnes-soluble polysaccharide. Immunology Letters, 2008, 121, 157-166.	2.5	25
23	Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 458-466.	2.6	25
24	Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. Anais Da Academia Brasileira De Ciencias, 2009, 81, 477-488.	0.8	24
25	Paracoccidioides brasiliensis induces secretion of IL-6 and IL-8 by lung epithelial cells. Modulation of host cytokine levels by fungal proteases. Microbes and Infection, 2012, 14, 1077-1085.	1.9	21
26	Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manp α1→3Manp α1→2IPC. BMC Microbiology, 2010, 10, 47.	3.3	19
27	Myriocin, a Serine Palmitoyltransferase Inhibitor, Blocks Cytokinesis in <i>Leishmania (Viannia) braziliensis</i> Promastigotes. Journal of Eukaryotic Microbiology, 2013, 60, 377-387.	1.7	14
28	Leishmania (Viannia) braziliensis Inositol Phosphorylceramide: Distinctive Sphingoid Base Composition. Frontiers in Microbiology, 2017, 8, 1453.	3.5	5
29	Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. Journal of Fungi (Basel, Switzerland), 2022, 8, 548.	3.5	5
30	Glycolipid Sensing and Innate Immunity in Paracoccidioidomycosis. Mycopathologia, 2014, 178, 153-162.	3.1	4
31	Histoplasma capsulatum chemotypes I and II induce IL-8 secretion in lung epithelial cells in distinct manners. Medical Mycology, 2020, 58, 1169-1177.	0.7	3
32	Corrigendum to: Disruption of the glucosylceramide biosynthetic pathway inAspergillus nidulansandAspergillus fumigatusby inhibitors of UDP-Glc: ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth (FEBS 26342). FEBS Letters, 2002, 526, 151-151.	2.8	2