
Laurent Kremer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5556190/publications.pdf Version: 2024-02-01

LALIDENT KDEMED

#	Article	IF	CITATIONS
1	Growth of <i>Mycobacterium tuberculosis</i> biofilms containing free mycolic acids and harbouring drugâ€tolerant bacteria. Molecular Microbiology, 2008, 69, 164-174.	2.5	454
2	Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews Microbiology, 2020, 18, 392-407.	28.6	407
3	Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Molecular Microbiology, 2004, 53, 391-403.	2.5	385
4	GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 2005, 123, 861-873.	28.9	379
5	<i>Mycobacterium abscessus</i> cording prevents phagocytosis and promotes abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E943-52.	7.1	314
6	Transfer of a point mutation in Mycobacterium tuberculosisÂinhA resolves the target of isoniazid. Nature Medicine, 2006, 12, 1027-1029.	30.7	281
7	The Fatty Acid Biosynthesis Enzyme Fabl Plays a Key Role in the Development of Liver-Stage Malarial Parasites. Cell Host and Microbe, 2008, 4, 567-578.	11.0	273
8	Altered NADH/NAD + Ratio Mediates Coresistance to Isoniazid and Ethionamide in Mycobacteria. Antimicrobial Agents and Chemotherapy, 2005, 49, 708-720.	3.2	263
9	The Methyl-Branched Fortifications of Mycobacterium tuberculosis. Chemistry and Biology, 2002, 9, 545-553.	6.0	242
10	Thiolactomycin and Related Analogues as Novel Anti-mycobacterial Agents Targeting KasA and KasB Condensing Enzymes inMycobacterium tuberculosis. Journal of Biological Chemistry, 2000, 275, 16857-16864.	3.4	231
11	Toll-Like Receptor 2 (TLR2)-Dependent-Positive and TLR2-Independent-Negative Regulation of Proinflammatory Cytokines by Mycobacterial Lipomannans. Journal of Immunology, 2004, 172, 4425-4434.	0.8	231
12	Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5157-5162.	7.1	194
13	TheMycobacterium tuberculosisFAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Molecular Microbiology, 2007, 64, 1442-1454.	2.5	188
14	Division and cell envelope regulation by Ser/Thr phosphorylation: <i>Mycobacterium</i> shows the way. Molecular Microbiology, 2010, 75, 1064-1077.	2.5	186
15	Overexpression ofinhA, but notkasA, confers resistance to isoniazid and ethionamide inMycobacterium smegmatis,M. bovisBCG andM. tuberculosis. Molecular Microbiology, 2002, 46, 453-466.	2.5	176
16	Identification and Substrate Specificity of β-Ketoacyl (Acyl Carrier Protein) Synthase III (mtFabH) from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2000, 275, 28201-28207.	3.4	165
17	Green fluorescent protein as a new expression marker in mycobacteria. Molecular Microbiology, 1995, 17, 913-922.	2.5	154
18	Galactan Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2001, 276, 26430-26440	3.4	147

#	Article	IF	CITATIONS
19	Immunoregulatory functions of interleukin 18 and its role in defense against bacterial pathogens. Journal of Molecular Medicine, 2002, 80, 147-162.	3.9	146
20	EthA, a Common Activator of Thiocarbamide-Containing Drugs Acting on Different Mycobacterial Targets. Antimicrobial Agents and Chemotherapy, 2007, 51, 1055-1063.	3.2	143
21	Mycobacterium tuberculosis Lipomannan Induces Apoptosis and Interleukin-12 Production in Macrophages. Infection and Immunity, 2004, 72, 2067-2074.	2.2	140
22	An FHA Phosphoprotein Recognition Domain Mediates Protein EmbR Phosphorylation by PknH, a Ser/Thr Protein Kinase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2003, 42, 15300-15309.	2.5	136
23	The distinct fate of smooth and rough <i>Mycobacterium abscessus</i> variants inside macrophages. Open Biology, 2016, 6, 160185.	3.6	132
24	Conditional Depletion of KasA, a Key Enzyme of Mycolic Acid Biosynthesis, Leads to Mycobacterial Cell Lysis. Journal of Bacteriology, 2005, 187, 7596-7606.	2.2	130
25	Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nature Chemical Biology, 2013, 9, 499-506.	8.0	129
26	Lipomannans, But Not Lipoarabinomannans, Purified from <i>Mycobacterium chelonae</i> and <i>Mycobacterium kansasii</i> Induce TNF-α and IL-8 Secretion by a CD14-Toll-Like Receptor 2-Dependent Mechanism. Journal of Immunology, 2003, 171, 2014-2023.	0.8	128
27	Functional Role of the PE Domain and Immunogenicity of the <i>Mycobacterium tuberculosis</i> Triacylglycerol Hydrolase LipY. Infection and Immunity, 2008, 76, 127-140.	2.2	127
28	β-Lactamase inhibition by avibactam in <i>Mycobacterium abscessus</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 1051-1058.	3.0	126
29	Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA:AcpM Transacylase (mtFabD), Two Major Components ofMycobacterium tuberculosis Fatty Acid Synthase II. Journal of Biological Chemistry, 2001, 276, 27967-27974.	3.4	113
30	Enzymatic Hydrolysis of Trehalose Dimycolate Releases Free Mycolic Acids during Mycobacterial Growth in Biofilms. Journal of Biological Chemistry, 2010, 285, 17380-17389.	3.4	113
31	Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochemical Journal, 2002, 364, 423-430.	3.7	112
32	Mycobacterial Lipomannan Induces Granuloma Macrophage Fusion via a TLR2-Dependent, ADAM9- and β1 Integrin-Mediated Pathway. Journal of Immunology, 2007, 178, 3161-3169.	0.8	112
33	Thiacetazone, an Antitubercular Drug that Inhibits Cyclopropanation of Cell Wall Mycolic Acids in Mycobacteria. PLoS ONE, 2007, 2, e1343.	2.5	112
34	The diverse family of <scp>M</scp> mp <scp>L</scp> transporters in mycobacteria: from regulation to antimicrobial developments. Molecular Microbiology, 2017, 104, 889-904.	2.5	109
35	Structural Study of Lipomannan and Lipoarabinomannan fromMycobacterium chelonae. Journal of Biological Chemistry, 2002, 277, 30635-30648.	3.4	107
36	Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochemical Journal, 2002, 365, 441-450.	3.7	107

#	Article	IF	CITATIONS
37	Recent advances and therapeutic journey of coumarins: current status and perspectives. Medicinal Chemistry Research, 2015, 24, 2771-2798.	2.4	107
38	The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis, 2004, 84, 263-274.	1.9	106
39	Keto-Mycolic Acid-Dependent Pellicle Formation Confers Tolerance to Drug-Sensitive Mycobacterium tuberculosis. MBio, 2013, 4, e00222-13.	4.1	103
40	The Condensing Activities of the Mycobacterium tuberculosis Type II Fatty Acid Synthase Are Differentially Regulated by Phosphorylation. Journal of Biological Chemistry, 2006, 281, 30094-30103.	3.4	101
41	A new piperidinol derivative targeting mycolic acid transport in <i>Mycobacterium abscessus</i> . Molecular Microbiology, 2016, 101, 515-529.	2.5	100
42	Identification of genes required for <i>Mycobacterium abscessus</i> growth in vivo with a prominent role of the ESX-4 locus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1002-E1011.	7.1	98
43	The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Letters in Applied Microbiology, 2002, 34, 233-237.	2.2	88
44	Lipomannan and Lipoarabinomannan from a Clinical Isolate of Mycobacterium kansasii. Journal of Biological Chemistry, 2003, 278, 36637-36651.	3.4	86
45	From the Characterization of the Four Serine/Threonine Protein Kinases (PknA/B/G/L) of Corynebacterium glutamicum toward the Role of PknA and PknB in Cell Division. Journal of Biological Chemistry, 2008, 283, 18099-18112.	3.4	86
46	TLR2-dependent eosinophil interactions with mycobacteria: role of α-defensins. Blood, 2009, 113, 3235-3244.	1.4	86
47	Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437-447.	3.7	84
48	A <i>Mycobacterium marinum</i> TesA mutant defective for major cell wallâ€associated lipids is highly attenuated in <i>Dictyostelium discoideum</i> and zebrafish embryos. Molecular Microbiology, 2011, 80, 919-934.	2.5	82
49	Insights into the smoothâ€toâ€rough transitioning in <i>Mycobacterium bolletii</i> unravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Molecular Microbiology, 2016, 99, 866-883.	2.5	82
50	1 <i>H</i> -1,2,3-Triazole-Tethered Isatin–Ferrocene and Isatin–Ferrocenylchalcone Conjugates: Synthesis and in Vitro Antitubercular Evaluation. Organometallics, 2013, 32, 5713-5719.	2.3	81
51	<i>In Vivo</i> Assessment of Drug Efficacy against Mycobacterium abscessus Using the Embryonic Zebrafish Test System. Antimicrobial Agents and Chemotherapy, 2014, 58, 4054-4063.	3.2	81
52	Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Frontiers in Microbiology, 2018, 9, 1145.	3.5	80
53	Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. Journal of Bacteriology, 1995, 177, 642-653.	2.2	79
54	Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2866-2868.	2.2	79

#	Article	IF	CITATIONS
55	Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	79
56	Mycobacterium bovis Bacillus Calmette Guérin infection prevents apoptosis of resting human monocytes. European Journal of Immunology, 1997, 27, 2450-2456.	2.9	78
57	Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking. PLoS Pathogens, 2016, 12, e1005986.	4.7	78
58	Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2558-2563.	7.1	76
59	Inhibition of the β-Lactamase Bla _{Mab} by Avibactam Improves the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of Imipenem against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	73
60	Dynamic and Structural Characterization of a Bacterial FHA Protein Reveals a New Autoinhibition Mechanism. Structure, 2009, 17, 568-578.	3.3	72
61	Identification of KasA as the cellular target of an anti-tubercular scaffold. Nature Communications, 2016, 7, 12581.	12.8	72
62	Phosphorylation of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Reductase MabA Regulates Mycolic Acid Biosynthesis. Journal of Biological Chemistry, 2010, 285, 12714-12725.	3.4	71
63	The Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Synthase III Activity Is Inhibited by Phosphorylation on a Single Threonine Residue. Journal of Biological Chemistry, 2009, 284, 6414-6424.	3.4	69
64	Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2016, 6, 122.	3.9	68
65	Deletion of a dehydratase important for intracellular growth and cording renders rough <i>Mycobacterium abscessus</i> avirulent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4228-37.	7.1	67
66	Inhibition of InhA Activity, but Not KasA Activity, Induces Formation of a KasA-containing Complex in Mycobacteria. Journal of Biological Chemistry, 2003, 278, 20547-20554.	3.4	66
67	Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochemical Journal, 2002, 363, 437.	3.7	65
68	The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 100.	3.9	65
69	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
70	Current status and future development of antitubercular chemotherapy. Expert Opinion on Investigational Drugs, 2002, 11, 1033-1049.	4.1	62
71	LosA, a Key Glycosyltransferase Involved in the Biosynthesis of a Novel Family of Glycosylated Acyltrehalose Lipooligosaccharides from Mycobacterium marinum. Journal of Biological Chemistry, 2005, 280, 42124-42133.	3.4	62
72	Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of <i>Mycobacterium abscessus</i> Infections. Journal of Medicinal Chemistry, 2017, 60, 5876-5888.	6.4	61

#	Article	IF	CITATIONS
73	Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2010, 78, 1591-1605.	2.5	60
74	Synthesis, Antitubercular Activity and Mechanism of Resistance of Highly Effective Thiacetazone Analogues. PLoS ONE, 2013, 8, e53162.	2.5	60
75	Mycobacterial lipolytic enzymes: A gold mine for tuberculosis research. Biochimie, 2013, 95, 66-73.	2.6	59
76	CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Reports, 2019, 26, 1828-1840.e4.	6.4	58
77	Phosphorylation of Mycobacterial PcaA Inhibits Mycolic Acid Cyclopropanation. Journal of Biological Chemistry, 2012, 287, 26187-26199.	3.4	56
78	Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol. Molecular Microbiology, 2005, 57, 1113-1126.	2.5	55
79	Antitubercular Activity of Disulfiram, an Antialcoholism Drug, against Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 4140-4145.	3.2	55
80	Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam–ferrocene and β-lactam–ferrocenylchalcone chimeric scaffolds. Dalton Transactions, 2012, 41, 5778.	3.3	55
81	Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in <i>Mycobacterium abscessus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	55
82	Probing the Mechanism of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH. Journal of Biological Chemistry, 2005, 280, 32539-32547.	3.4	54
83	The <i>Mycobacterium tuberculosis</i> serine/threonine kinase PknL phosphorylates Rv2175c: Mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics, 2008, 8, 521-533.	2.2	54
84	Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile. Microbiology (United Kingdom), 2002, 148, 3145-3154.	1.8	54
85	Acid-Fast Positive and Acid-Fast Negative <i>Mycobacterium tuberculosis</i> : The Koch Paradox. Microbiology Spectrum, 2017, 5, .	3.0	53
86	In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clinical Microbiology and Infection, 2014, 20, O1124-O1127.	6.0	52
87	Resistance to Thiacetazone Derivatives Active against Mycobacterium abscessus Involves Mutations in the MmpL5 Transcriptional Repressor MAB_4384. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	51
88	Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis. PLoS ONE, 2011, 6, e25078.	2.5	51
89	Mycobacterial Lipomannan Induces Matrix Metalloproteinase-9 Expression in Human Macrophagic Cells through a Toll-Like Receptor 1 (TLR1)/TLR2- and CD14-Dependent Mechanism. Infection and Immunity, 2005, 73, 7064-7068.	2.2	50
90	Dual Inhibition of Mycobacterial Fatty Acid Biosynthesis and Degradation by 2-Alkynoic Acids. Chemistry and Biology, 2006, 13, 297-307.	6.0	50

#	Article	IF	CITATIONS
91	7â€Chloroquinoline–isatin Conjugates: Antimalarial, Antitubercular, and Cytotoxic Evaluation. Chemical Biology and Drug Design, 2014, 83, 622-629.	3.2	50
92	MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth. PLoS ONE, 2012, 7, e46493.	2.5	50
93	Azide–alkynecycloadditionen route towards 1H-1,2,3-triazole-tethered β-lactam–ferrocene and β-lactam–ferrocenylchalcone conjugates: synthesis and in vitro anti-tubercular evaluation. Dalton Transactions, 2013, 42, 1492-1500.	3.3	49
94	Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos. Journal of Visualized Experiments, 2015, , .	0.3	48
95	The Structure of Mycobacterium tuberculosis MPT51 (FbpC1) Defines a New Family of Non-catalytic α/β Hydrolases. Journal of Molecular Biology, 2004, 335, 519-530.	4.2	47
96	Mycobacterium bovis BCG Producing Interleukin-18 Increases Antigen-Specific Gamma Interferon Production in Mice. Infection and Immunity, 2002, 70, 6549-6557.	2.2	46
97	Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2003, 308, 820-825.	2.1	46
98	Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant. MBio, 2014, 5, e00013-14.	4.1	45
99	pH-dependent pore-forming activity of OmpATb from Mycobacterium tuberculosis and characterization of the channel by peptidic dissection. Molecular Microbiology, 2006, 61, 826-837.	2.5	44
100	Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2020, 6, 324-337.	3.8	44
101	Systemic and Mucosal Immune Responses after Intranasal Administration of Recombinant <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin Expressing Clutathione <i>S</i> -Transferase from <i>Schistosoma haematobium</i> . Infection and Immunity, 1998, 66, 5669-5676.	2.2	43
102	Ineffective Cellular Immune Response Associated with T-Cell Apoptosis in Susceptible Mycobacterium bovis BCG-Infected Mice. Infection and Immunity, 2000, 68, 4264-4273.	2.2	43
103	Dissecting <i>erm</i> (41)-Mediated Macrolide-Inducible Resistance in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	43
104	The Molecular Genetics of Mycolic Acid Biosynthesis. Microbiology Spectrum, 2014, 2, MGM2-0003-2013.	3.0	42
105	MmpL8 _{MAB} controls <i>Mycobacterium abscessus</i> virulence and production of a previously unknown glycolipid family. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10147-E10156.	7.1	42
106	Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1263-1277.	2.5	41
107	Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochemical and Biophysical Research Communications, 2011, 412, 401-406.	2.1	41
108	Synthesis, characterization and inÂvitro anti-Trypanosoma cruzi and anti-Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. Journal of Organometallic Chemistry, 2014, 755, 1-6.	1.8	41

#	Article	IF	CITATIONS
109	The <i>Mycobacterium tuberculosis</i> GroEL1 Chaperone Is a Substrate of Ser/Thr Protein Kinases. Journal of Bacteriology, 2009, 191, 2876-2883.	2.2	40
110	Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis. Scientific Reports, 2017, 7, 11751.	3.3	40
111	Efficient homologous recombination in fast-growing and slow-growing mycobacteria. Journal of Bacteriology, 1996, 178, 3091-3098.	2.2	39
112	Mycobacterium marinum Lipooligosaccharides Are Unique Caryophyllose-containing Cell Wall Glycolipids That Inhibit Tumor Necrosis Factor-α Secretion in Macrophages. Journal of Biological Chemistry, 2009, 284, 20975-20988.	3.4	38
113	New cyrhetrenyl and ferrocenyl sulfonamides: Synthesis, characterization, X-ray crystallography, theoretical study and anti- Mycobacterium tuberculosis activity. Polyhedron, 2017, 134, 166-172.	2.2	38
114	Expression, purification and characterisation of soluble ClfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming ClfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expression and Purification, 2008, 58, 332-341.	1.3	37
115	The Mycobacterium tuberculosis Ser/Thr Kinase Substrate Rv2175c Is a DNA-binding Protein Regulated by Phosphorylation. Journal of Biological Chemistry, 2009, 284, 19290-19300.	3.4	37
116	<i><scp>MAB</scp>_3551c</i> encodes the primary triacylglycerol synthase involved in lipid accumulation in <scp><i>M</i></scp> <i>ycobacterium abscessus</i> . Molecular Microbiology, 2016, 102, 611-627.	2.5	37
117	Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. Journal of Biological Chemistry, 2018, 293, 2755-2769.	3.4	37
118	Exposure of Mycobacteria to Cell Wall-inhibitory Drugs Decreases Production of Arabinoglycerolipid Related to Mycolyl-arabinogalactan-peptidoglycan Metabolism. Journal of Biological Chemistry, 2012, 287, 11060-11069.	3.4	36
119	MgtC as a Host-Induced Factor and Vaccine Candidate against Mycobacterium abscessus Infection. Infection and Immunity, 2016, 84, 2895-2903.	2.2	36
120	Immunostimulatory effect of IL-18-encoding plasmid in DNA vaccination against murine Schistosoma mansoni infection. Vaccine, 2001, 19, 1373-1380.	3.8	35
121	Interleukin-18 modulates immune responses induced by HIV-1 Nef DNA prime/protein boost vaccine. Vaccine, 2000, 19, 95-102.	3.8	34
122	Fatty Acyl Chains of Mycobacterium marinum Lipooligosaccharides. Journal of Biological Chemistry, 2011, 286, 33678-33688.	3.4	34
123	Mycobacterium tuberculosis Maltosyltransferase GlgE, a Genetically Validated Antituberculosis Target, Is Negatively Regulated by Ser/Thr Phosphorylation. Journal of Biological Chemistry, 2013, 288, 16546-16556.	3.4	33
124	Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	33
125	Humoral and Cellular Immune Responses in Mice Immunized with Recombinant <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin Producing a Pertussis Toxin-Tetanus Toxin Hybrid Protein. Infection and Immunity, 1999, 67, 5100-5105.	2.2	33
126	Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target. PLoS ONE, 2009, 4, e6889.	2.5	33

#	Article	IF	CITATIONS
127	AccD6, a Key Carboxyltransferase Essential for Mycolic Acid Synthesis in Mycobacterium tuberculosis, Is Dispensable in a Nonpathogenic Strain. Journal of Bacteriology, 2011, 193, 6960-6972.	2.2	32
128	A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. Journal of Biological Chemistry, 2019, 294, 17512-17523.	3.4	32
129	Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. International Journal of Antimicrobial Agents, 2013, 42, 27-35.	2.5	31
130	Natural and Synthetic Flavonoids as Potent <i>Mycobacterium tuberculosis</i> UGM Inhibitors. Chemistry - A European Journal, 2017, 23, 10423-10429.	3.3	31
131	Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Scientific Reports, 2019, 9, 8667.	3.3	31
132	Efficacy of Bedaquiline, Alone or in Combination with Imipenem, against Mycobacterium abscessus in C3HeB/FeJ Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	31
133	pETPhos: A customized expression vector designed for further characterization of Ser/Thr/Tyr protein kinases and their substrates. Plasmid, 2008, 60, 149-153.	1.4	30
134	Point Mutations within the Fatty Acid Synthase Type II Dehydratase Components HadA or HadC Contribute to Isoxyl Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 629-632.	3.2	30
135	4â€Aminoquinolineâ€ <i>β</i> ‣actam Conjugates: Synthesis, Antimalarial, and Antitubercular Evaluation. Chemical Biology and Drug Design, 2014, 83, 191-197.	3.2	30
136	1 <i>H</i> â€1,2,3â€triazoleâ€tethered uracilâ€ferrocene and uracilâ€ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chemical Biology and Drug Design, 2017, 89, 856-861.	3.2	30
137	Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 1597-1608.	3.8	30
138	X-Ray Crystal Structure of Mycobacterium tuberculosis β-Ketoacyl Acyl Carrier Protein Synthase II (mtKasB). Journal of Molecular Biology, 2007, 366, 469-480.	4.2	29
139	Increased Phagocytosis of Mycobacterium marinum Mutants Defective in Lipooligosaccharide Production. Journal of Biological Chemistry, 2014, 289, 215-228.	3.4	29
140	A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants. Frontiers in Cellular and Infection Microbiology, 2018, 8, 69.	3.9	29
141	The TetR Family Transcription Factor MAB_2299c Regulates the Expression of Two Distinct MmpS-MmpL Efflux Pumps Involved in Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	29
142	Design, synthesis and docking studies of some novel (R)-2-(4â€2-chlorophenyl)-3-(4â€2-nitrophenyl)-1,2,3,5-tetrahydrobenzo[4,5] imidazo [1,2-c]pyrimidin-4-ol derivatives as antitubercular agents. European Journal of Medicinal Chemistry, 2014, 83, 245-255.	5.5	28
143	Structural Analysis of an Unusual BioactiveN-Acylated Lipo-Oligosaccharide LOS-IV inMycobacterium marinum. Journal of the American Chemical Society, 2010, 132, 16073-16084.	13.7	27
144	Identification of inhibitors targeting Mycobacterium tuberculosis cell wall biosynthesis via dynamic combinatorial chemistry. Chemical Communications, 2017, 53, 10632-10635.	4.1	27

#	Article	IF	CITATIONS
145	Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus. Frontiers in Microbiology, 2018, 9, 649.	3.5	27
146	Fast chemical force microscopy demonstrates that glycopeptidolipids define nanodomains of varying hydrophobicity on mycobacteria. Nanoscale Horizons, 2020, 5, 944-953.	8.0	27
147	The N-Terminal Domain of OmpATb Is Required for Membrane Translocation and Pore-Forming Activity in Mycobacteria. Journal of Bacteriology, 2007, 189, 6351-6358.	2.2	26
148	Base-Promoted Expedient Access to Spiroisatins: Synthesis and Antitubercular Evaluation of 1 <i>H</i> -1,2,3-Triazole-Tethered Spiroisatin–Ferrocene and Isatin–Ferrocene Conjugates. Organometallics, 2013, 32, 7386-7398.	2.3	26
149	Palladium (II) and platinum (II) complexes containing organometallic thiosemicarbazone ligands: Synthesis, characterization, X-ray structures and antitubercular evaluation. Inorganic Chemistry Communication, 2015, 55, 139-142.	3.9	26
150	Neutrophil killing of Mycobacterium abscessus by intra- and extracellular mechanisms. PLoS ONE, 2018, 13, e0196120.	2.5	26
151	EmbR2, a structural homologue of EmbR, inhibits the <i>Mycobacterium tuberculosis</i> kinase/substrate pair PknH/EmbR. Biochemical Journal, 2008, 410, 309-317.	3.7	25
152	A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of <i>Mycobacterium marinum</i> in multiple hosts. Cellular Microbiology, 2016, 18, 1489-1507.	2.1	25
153	Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases. International Journal of Antimicrobial Agents, 2018, 51, 651-654.	2.5	25
154	1 <i>H</i> -Benzo[<i>d</i>]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	25
155	Detection of Mycobacterium tuberculosis in paucibacillary sputum: performances of the Xpert MTB/RIF ultra compared to the Xpert MTB/RIF, and IS6110 PCR. Diagnostic Microbiology and Infectious Disease, 2019, 94, 365-370.	1.8	25
156	Mercury resistance as a selective marker for recombinant mycobacteria. Microbiology (United) Tj ETQq0 0 0 rgB1	/Qverloct	10 Tf 50 30
157	An improved method to unravel phosphoacceptors in Ser/Thr protein kinaseâ€phosphorylated substrates. Proteomics, 2010, 10, 3910-3915.	2.2	24
158	Cyrhetrenyl and ferrocenyl 1,3,4-thiadiazole derivatives: Synthesis, characterization, crystal structures and in vitro antitubercular activity. Inorganic Chemistry Communication, 2015, 55, 48-50.	3.9	24
159	Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infection and Immunity, 2018, 86, .	2.2	24
160	Antimycobacterial Activity and Mechanism of Action of NAS-91. Antimicrobial Agents and Chemotherapy, 2008, 52, 1162-1166.	3.2	23
161	Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system. International Journal of Systematic and Evolutionary Microbiology. 2016. 66. 3694-3702.	1.7	23
162	Rough and smooth variants of Mycobacterium abscessus are differentially controlled by host immunity during chronic infection of adult zebrafish. Nature Communications, 2022, 13, 952.	12.8	23

#	Article	IF	CITATIONS
163	Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 1065-1072.	5.7	22
164	The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation. Biochemical and Biophysical Research Communications, 2014, 446, 1132-1138.	2.1	22
165	Mycobacteriophage–antibiotic therapy promotes enhanced clearance of drug-resistant <i>Mycobacterium abscessus</i> . DMM Disease Models and Mechanisms, 2021, 14, .	2.4	22
166	Immune Response Induced by Recombinant Mycobacterium bovis BCG Producing the Cholera Toxin B Subunit. Infection and Immunity, 2003, 71, 2933-2937.	2.2	21
167	Lsr2 Is an Important Determinant of Intracellular Growth and Virulence in Mycobacterium abscessus. Frontiers in Microbiology, 2019, 10, 905.	3.5	21
168	Mycobacterium marinum MgtC Plays a Role in Phagocytosis but is Dispensable for Intracellular Multiplication. PLoS ONE, 2014, 9, e116052.	2.5	21
169	Characterization of a mycobacterial cellulase and its impact on biofilm- and drug-induced cellulose production. Glycobiology, 2017, 27, 392-399.	2.5	20
170	Re-emergence of tuberculosis: strategies and treatment. Expert Opinion on Investigational Drugs, 2002, 11, 153-157.	4.1	19
171	Temperature-dependent Regulation of Mycolic Acid Cyclopropanation in Saprophytic Mycobacteria. Journal of Biological Chemistry, 2010, 285, 21698-21707.	3.4	19
172	A new dehydratase conferring innate resistance to thiacetazone and intraâ€amoebal survival of <scp><i>M</i></scp> <i>ycobacterium smegmatis</i> . Molecular Microbiology, 2015, 96, 1085-1102.	2.5	19
173	Organometallic tosyl hydrazones: Synthesis, characterization, crystal structures and in vitro evaluation for anti- Mycobacterium tuberculosis and antiproliferative activities. Polyhedron, 2017, 131, 40-45.	2.2	19
174	Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline. PLoS Pathogens, 2021, 17, e1009965.	4.7	19
175	Dry-Powder Inhaler Formulation of Rifampicin: An Improved Targeted Delivery System for Alveolar Tuberculosis. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2017, 30, 388-398.	1.4	18
176	Current perspectives on the families of glycoside hydrolases of <i>Mycobacterium tuberculosis</i> : their importance and prospects for assigning function to unknowns. Glycobiology, 2017, 27, 112-122.	2.5	18
177	Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport. Frontiers in Cellular and Infection Microbiology, 2017, 7, 388.	3.9	18
178	Identification by surface plasmon resonance of the mycobacterial lipomannan and lipoarabinomannan domains involved in binding to CD14 and LPS-binding protein. FEBS Letters, 2007, 581, 1383-1390.	2.8	17
179	Synthesis and evaluation of anti-tubercular activity of new dithiocarbamate sugar derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 899-903.	2.2	17
180	Alkylated/aminated nitroimidazoles and nitroimidazole-7-chloroquinoline conjugates: Synthesis and anti-mycobacterial evaluation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1309-1312.	2.2	16

#	Article	IF	CITATIONS
181	Structural Determination and Toll-like Receptor 2-dependent Proinflammatory Activity of Dimycolyl-diarabino-glycerol from Mycobacterium marinum*. Journal of Biological Chemistry, 2012, 287, 34432-34444.	3.4	15
182	Azide–alkyne cycloaddition en route to 4-aminoquinoline–ferrocenylchalcone conjugates: synthesis and anti-TB evaluation. Future Medicinal Chemistry, 2017, 9, 1701-1708.	2.3	15
183	Verapamil Improves the Activity of Bedaquiline against Mycobacterium abscessusIn Vitro and in Macrophages. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
184	Structureâ€Based Design and Synthesis of Piperidinol ontaining Molecules as New <i>Mycobacterium abscessus</i> Inhibitors. ChemistryOpen, 2020, 9, 351-365.	1.9	15
185	Mycobacterial lipomannan induces MAP kinase phosphataseâ€a expression in macrophages. FEBS Letters, 2008, 582, 445-450.	2.8	14
186	Mycobacterium tuberculosis S-adenosyl-l-homocysteine hydrolase is negatively regulated by Ser/Thr phosphorylation. Biochemical and Biophysical Research Communications, 2013, 430, 858-864.	2.1	14
187	Crystal structure of the aminoglycosides <i>N</i> â€acetyltransferase Eis2 from <i>MycobacteriumÂabscessus</i> . FEBS Journal, 2019, 286, 4342-4355.	4.7	14
188	Dissecting the membrane lipid binding properties and lipase activity ofMycobacteriumÂtuberculosisLipY domains. FEBS Journal, 2019, 286, 3164-3181.	4.7	14
189	CFTR Depletion Confers Hypersusceptibility to Mycobacterium fortuitum in a Zebrafish Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 357.	3.9	14
190	The roles of tetraspanins in bacterial infections. Cellular Microbiology, 2020, 22, e13260.	2.1	14
191	The endogenous galactofuranosidase GlfH1 hydrolyzes mycobacterial arabinogalactan. Journal of Biological Chemistry, 2020, 295, 5110-5123.	3.4	14
192	Conserved and specialized functions of Type VII secretion systems in non-tuberculous mycobacteria. Microbiology (United Kingdom), 2021, 167, .	1.8	14
193	Overexpression of the KdpF Membrane Peptide in Mycobacterium bovis BCG Results in Reduced Intramacrophage Growth and Altered Cording Morphology. PLoS ONE, 2013, 8, e60379.	2.5	14
194	Structure of <i>Mycobacterium tuberculosis</i> mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT). Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 831-835.	0.7	13
195	Use of the <i>Salmonella</i> MgtR peptide as an antagonist of the <i>Mycobacterium</i> MgtC virulence factor. Future Microbiology, 2016, 11, 215-225.	2.0	13
196	Discovery of the first Mycobacterium tuberculosis MabA (FabG1) inhibitors through a fragment-based screening. European Journal of Medicinal Chemistry, 2020, 200, 112440.	5.5	13
197	Large Extracellular Cord Formation in a Zebrafish Model of Mycobacterium kansasii Infection. Journal of Infectious Diseases, 2020, 222, 1046-1050.	4.0	13
198	Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis?. FEMS Microbiology Reviews, 2021, 45, .	8.6	13

#	Article	IF	CITATIONS
199	Exposure to a Cutinase-like Serine Esterase Triggers Rapid Lysis of Multiple Mycobacterial Species. Journal of Biological Chemistry, 2013, 288, 382-392.	3.4	12
200	Binding of NADP+ triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase. Biochemical Journal, 2017, 474, 907-921.	3.7	12
201	Optimized Lysis-Extraction Method Combined With IS6110-Amplification for Detection of Mycobacterium tuberculosis in Paucibacillary Sputum Specimens. Frontiers in Microbiology, 2018, 9, 2224.	3.5	12
202	<i>O</i> -Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of <i>Mycobacterium abscessus</i> and Macrophage Invasion. ACS Infectious Diseases, 2020, 6, 2756-2770.	3.8	12
203	Synergistic Interactions of Indole-2-Carboxamides and \hat{l}^2 -Lactam Antibiotics against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	12
204	Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorganic and Medicinal Chemistry, 2020, 28, 115579.	3.0	12
205	Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chemical Biology, 2022, 29, 910-924.e7.	5.2	12
206	A new series of mycobacterial expression vectors for the development of live recombinant vaccines. Gene, 1996, 176, 149-154.	2.2	11
207	Polysaccharide structural variability in mycobacteria: identification and characterization of phosphorylated mannan and arabinomannan. Glycoconjugate Journal, 2007, 24, 439-448.	2.7	11
208	Synthesis and Antimycobacterial Evaluation of Piperazylâ€alkylâ€Ether Linked 7â€Chloroquinolineâ€Chalcone/Ferrocenyl Chalcone Conjugates. ChemistrySelect, 2018, 3, 8511-8513.	1.5	11
209	Variedly connected 1,8-naphthalimide-7-chloroquinoline conjugates: Synthesis, anti-mycobacterial and cytotoxic evaluation. Bioorganic Chemistry, 2019, 92, 103241.	4.1	11
210	Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127576.	2.2	11
211	Mycobacterium abscessus. Trends in Microbiology, 2021, 29, 951-952.	7.7	11
212	Microwaveâ€Assisted Highly Efficient Route to 4â€Aminoquinolineâ€Phthalimide Conjugates: Synthesis and Antiâ€Tubercular Evaluation. ChemistrySelect, 2017, 2, 10782-10785.	1.5	10
213	Biological and Biochemical Evaluation of Isatin-Isoniazid Hybrids as Bactericidal Candidates against <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0001121.	3.2	10
214	The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Frontiers in Immunology, 2021, 12, 707824.	4.8	10
215	Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. European Journal of Medicinal Chemistry, 2022, 239, 114531.	5.5	10
216	The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Scientific Reports, 2017, 7, 42692.	3.3	9

#	Article	IF	CITATIONS
217	Attenuation of Mycobacterium species through direct and macrophage mediated pathway by unsymmetrical diaryl urea. European Journal of Medicinal Chemistry, 2017, 125, 825-841.	5.5	9
218	Synthesis, anti-mycobacterial and cytotoxic evaluation of substituted isoindoline-1,3-dione-4-aminoquinolines coupled <i>via</i> alkyl/amide linkers. RSC Advances, 2019, 9, 8515-8528.	3.6	9
219	The C-Terminal Domain of the Virulence Factor MgtC Is a Divergent ACT Domain. Journal of Bacteriology, 2012, 194, 6255-6263.	2.2	8
220	Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue. Journal of Proteomics, 2012, 75, 5695-5705.	2.4	8
221	Design, synthesis, antiâ€mycobacterial and cytotoxic evaluation of Câ€4 functionalized 1,8â€naphthalimideâ€heterocyclic hydrazide conjugates. Chemical Biology and Drug Design, 2019, 94, 1300-1305.	3.2	8
222	The crystal structure of the mycobacterial trehalose monomycolate transport factor A, TtfA, reveals an atypical fold. Proteins: Structure, Function and Bioinformatics, 2020, 88, 809-815.	2.6	8
223	1 <i>H</i> â€1,2,3â€triazole embedded Isatinâ€Benzaldehydeâ€bis(heteronuclearhydrazones): design, synthesis, antimycobacterial, and cytotoxic evaluation. Chemical Biology and Drug Design, 2022, 99, 301-307.	3.2	7
224	CR3-dependent negative regulation of human eosinophils by Mycobacterium bovis BCG lipoarabinomannan. Immunology Letters, 2012, 143, 202-207.	2.5	6
225	Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. Acta Crystallographica Section D: Structural Biology, 2018, 74, 383-393.	2.3	6
226	Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus. Cells, 2020, 9, 2410.	4.1	6
227	The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Frontiers in Immunology, 2021, 12, 707856.	4.8	6
228	Synthesis and biological evaluation of 3,4-dihydro-1H-[1,4] oxazepino [6,5,4-hi] indol-1-ones and 4,6-dihydrooxepino [5,4,3-cd] indol-1(3H)-ones as Mycobacterium tuberculosis inhibitors. Bioorganic and Medicinal Chemistry, 2021, 43, 116248.	3.0	6
229	Overexpression of the <i>Salmonella</i> KdpF membrane peptide modulates expression of <i>kdp</i> genes and intramacrophage growth. FEMS Microbiology Letters, 2014, 359, 34-41.	1.8	5
230	Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Frontiers in Immunology, 2022, 13, 838425.	4.8	5
231	Crystallization and preliminary X-ray diffraction data ofMycobacterium tuberculosisFbpC1 (Rv3803c). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2303-2305.	2.5	4
232	Expression of OmpATb is dependent on small membrane proteins in Mycobacterium bovis BCG. Tuberculosis, 2011, 91, 544-548.	1.9	4
233	B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections. PLoS ONE, 2018, 13, e0196470.	2.5	4
234	Extraction and Purification of Mycobacterial Mycolic Acids. Bio-protocol, 2014, 4, .	0.4	4

#	Article	IF	CITATIONS
235	Severe inhibition of lipooligosaccharide synthesis induces TLR2-dependent elimination of Mycobacterium marinum from THP1-derived macrophages. Microbial Cell Factories, 2017, 16, 217.	4.0	3
236	Elimination of PknL and MSMEG_4242 in Mycobacterium smegmatis alters the character of the outer cell envelope and selects for mutations in Lsr2. Cell Surface, 2021, 7, 100060.	3.0	3
237	Antibiotics and New Inhibitors of the Cell Wall. , 0, , 107-131.		3
238	Synthesis and Antitubercular Evaluation of Some Novel 1,2,3,6-tetrahydropyrimidine-5-carbonitrile. Journal of Advances in Chemistry, 2014, 9, 2072-2077.	0.1	3
239	MmpL3, the trehalose monomycolate transporter, is stable in solution in several detergents and can be reconstituted into peptidiscs. Protein Expression and Purification, 2022, 191, 106014.	1.3	3
240	Biochemical, structural, and functional studies reveal that MAB_4324c from <i>Mycobacterium abscessus</i> is an active tandem repeat <i>N</i> â€acetyltransferase. FEBS Letters, 2022, 596, 1516-1532.	2.8	3
241	Acid-Fast Positive and Acid-Fast Negative <i>Mycobacterium tuberculosis</i> : The Koch Paradox. , O, , 517-532.		2
242	Self-control of vitamin K2 production captured in the crystal. Journal of Biological Chemistry, 2020, 295, 3771-3772.	3.4	2
243	Structural analysis of the <i>N</i> â€acetyltransferase Eis1 from <i>Mycobacterium abscessus</i> reveals the molecular determinants of its incapacity to modify aminoglycosides. Proteins: Structure, Function and Bioinformatics, 2021, 89, 94-106.	2.6	2
244	Recent advances in mycobacterial arabinogalactan biosynthesis in post-genomics era. Special Publication - Royal Society of Chemistry, 0, , 178-185.	0.0	2
245	The Molecular Genetics of Mycolic Acid Biosynthesis. , 0, , 611-631.		2
246	Intrabacterial lipid inclusions. , 2022, , 253-269.		2
247	Le lipoarabinomannane : structure et fonctions d'un glycolipide impliqué dans la pathogénie tuberculeuse Medecine/Sciences, 1999, 15, 842.	0.2	1