
Kin-Chow Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5555375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. , 2022, 1, .		6
2	Thapsigargin Is a Broad-Spectrum Inhibitor of Major Human Respiratory Viruses: Coronavirus, Respiratory Syncytial Virus and Influenza A Virus. Viruses, 2021, 13, 234.	3.3	33
3	Neurovirulence of Avian Influenza Virus Is Dependent on the Interaction of Viral NP Protein with FMRP in the Murine Brain. Journal of Virology, 2021, 95, .	3.4	2
4	Reassortment with Dominant Chicken H9N2 Influenza Virus Contributed to the Fifth H7N9 Virus Human Epidemic. Journal of Virology, 2021, 95, .	3.4	27
5	IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nature Microbiology, 2021, 6, 932-945.	13.3	61
6	Mink is a highly susceptible host species to circulating human and avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 472-480.	6.5	22
7	Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin. Virulence, 2021, 12, 2946-2956.	4.4	12
8	H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: Mechanism of avian influenza virus inter-species infection in humans. PLoS Pathogens, 2021, 17, e1010098.	4.7	10
9	Thapsigargin at Non-Cytotoxic Levels Induces a Potent Host Antiviral Response that Blocks Influenza A Virus Replication. Viruses, 2020, 12, 1093.	3.3	18
10	Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17204-17210.	7.1	195
11	Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. Journal of General Virology, 2019, 100, 1273-1281.	2.9	27
12	Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses. Virology Journal, 2018, 15, 68.	3.4	6
13	M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. Journal of Virology, 2017, 91, .	3.4	41
14	Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. Journal of General Virology, 2017, 98, 1185-1195.	2.9	20
15	Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. Journal of Virology, 2016, 90, 8105-8114.	3.4	68
16	Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets. Journal of Virology, 2016, 90, 6235-6243.	3.4	64
17	Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Scientific Reports, 2016, 6, 27067.	3.3	12
18	Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation. Scientific Reports, 2016, 5, 17999.	3.3	22

KIN-CHOW CHANG

#	Article	IF	CITATIONS
19	Extended 2D myotube culture recapitulates postnatal fibre type plasticity. BMC Cell Biology, 2015, 16, 23.	3.0	9
20	Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. Journal of General Virology, 2015, 96, 2036-2049.	2.9	54
21	The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Scientific Reports, 2015, 5, 8262.	3.3	69
22	Investigation into the animal species contents of popular wet pet foods. Acta Veterinaria Scandinavica, 2015, 57, 7.	1.6	24
23	DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells. Genomics Data, 2015, 4, 60-64.	1.3	5
24	Chicken and Duck Myotubes Are Highly Susceptible and Permissive to Influenza Virus Infection. Journal of Virology, 2015, 89, 2494-2506.	3.4	8
25	PA-X is a virulence factor in avian H9N2 influenza virus. Journal of General Virology, 2015, 96, 2587-2594.	2.9	57
26	Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Veterinary Research, 2014, 45, 118.	3.0	84
27	Comparative Virus Replication and Host Innate Responses in Human Cells Infected with Three Prevalent Clades (2.3.4, 2.3.2, and 7) of Highly Pathogenic Avian Influenza H5N1 Viruses. Journal of Virology, 2014, 88, 725-729.	3.4	11
28	Naturally Occurring Mutations in the PA Gene Are Key Contributors to Increased Virulence of Pandemic H1N1/09 Influenza Virus in Mice. Journal of Virology, 2014, 88, 4600-4604.	3.4	36
29	Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine. Journal of Virology, 2014, 88, 11981-11994.	3.4	24
30	High Basal Expression of Interferon-Stimulated Genes in Human Bronchial Epithelial (BEAS-2B) Cells Contributes to Influenza A Virus Resistance. PLoS ONE, 2014, 9, e109023.	2.5	38
31	Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition To Modulate Skeletal Muscle and Cardiomyocyte Function. Molecular and Cellular Biology, 2013, 33, 2586-2602.	2.3	43
32	Mammalian Innate Resistance to Highly Pathogenic Avian Influenza H5N1 Virus Infection Is Mediated through Reduced Proinflammation and Infectious Virus Release. Journal of Virology, 2012, 86, 9201-9210.	3.4	26
33	Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1. Immunology and Cell Biology, 2012, 90, 116-123.	2.3	42
34	A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology, 2012, 13, 16.	3.0	44
35	18S rRNAis a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virology Journal, 2012, 9, 230.	3.4	123
36	Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 377-389.	4.1	12

KIN-CHOW CHANG

#	Article	IF	CITATIONS
37	Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/Â gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Research, 2011, 39, 5907-5925.	14.5	42
38	Molecular and cellular insights into a distinct myopathy of Great Dane dogs. Veterinary Journal, 2010, 183, 322-327.	1.7	2
39	Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Veterinary Research, 2010, 6, 4.	1.9	171
40	Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2009, 03, 143-51.	0.1	106
41	Chapter 2 Calcineurin Signaling and the Slow Oxidative Skeletal Muscle Fiber Type. International Review of Cell and Molecular Biology, 2009, 277, 67-101.	3.2	28
42	Different roles of H-ras for regulation of myosin heavy chain promoters in satellite cell-derived muscle cell culture during proliferation and differentiation. American Journal of Physiology - Cell Physiology, 2009, 297, C1012-C1018.	4.6	7
43	The p38α/β Mitogen-activated Protein Kinases Mediate Recruitment of CREB-binding Protein to Preserve Fast Myosin Heavy Chain IId/x Gene Activity in Myotubes. Journal of Biological Chemistry, 2007, 282, 7265-7275.	3.4	22
44	Activation of the β myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. Journal of Cellular Physiology, 2007, 211, 138-148.	4.1	63
45	Calcineurin differentially regulates fast myosin heavy chain genes in oxidative muscle fibre type conversion. Cell and Tissue Research, 2007, 329, 515-527.	2.9	24
46	DNA vaccination can protect Cyprinus Carpio against spring viraemia of carp virus. Vaccine, 2006, 24, 4927-4933.	3.8	76
47	Porcine congenital splayleg is characterised by muscle fibre atrophy associated with relative rise in MAFbx and fall in P311 expression. BMC Veterinary Research, 2006, 2, 23.	1.9	22
48	Restriction of Dietary Energy and Protein Induces Molecular Changes in Young Porcine Skeletal Muscles. Journal of Nutrition, 2004, 134, 2191-2199.	2.9	70
49	Calcineurin activates NF-κB in skeletal muscle C2C12 cells. Cellular Signalling, 2003, 15, 471-478.	3.6	26
50	Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics, 2003, 4, 8.	2.8	68
51	Postnatal myosin heavy chain isoforms in prenatal porcine skeletal muscles: Insights into temporal regulation. The Anatomical Record, 2003, 273A, 731-740.	1.8	18
52	Quantifying the Temporospatial Expression of Postnatal Porcine Skeletal Myosin Heavy Chain Genes. Journal of Histochemistry and Cytochemistry, 2002, 50, 353-364.	2.5	52
53	The 5'-end of the porcine perinatal myosin heavy chain gene shows alternative splicing and is clustered with repeat elements. Journal of Muscle Research and Cell Motility, 2000, 21, 183-188.	2.0	9
54	Developmental Expression and 5′ Cloning of the Porcine 2x and 2b Myosin Heavy Chain Genes. DNA and Cell Biology, 1997, 16, 1429-1437.	1.9	42

KIN-CHOW CHANG

#	Article	IF	CITATIONS
55	Cloning and in vivo expression of the pig MyoD gene. Journal of Muscle Research and Cell Motility, 1995, 16, 243-247.	2.0	6
56	Transformation of a novel direct-repeat repressor element into a promoter and enhancer by multimerisation. Nucleic Acids Research, 1992, 20, 1669-1674.	14.5	3
57	Strong expression of foreign genes following direct injection into fish muscle. FEBS Letters, 1991, 290, 73-76.	2.8	114
58	Studies in the in vivo expression of the influenza resistance gene Mx by in-situ hybridisation. Archives of Virology, 1990, 110, 151-164.	2.1	26