Sean Munro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555494/publications.pdf

Version: 2024-02-01

101 papers 24,584 citations

59 h-index 98 g-index

117 all docs

117 docs citations

117 times ranked

21678 citing authors

#	Article	IF	CITATIONS
1	Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365, 61-65.	13.7	4,425
2	A C-terminal signal prevents secretion of luminal ER proteins. Cell, 1987, 48, 899-907.	13.5	2,176
3	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
4	An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 1986, 46, 291-300.	13.5	1,500
5	Lipid Rafts. Cell, 2003, 115, 377-388.	13.5	1,422
6	Cholesterol and the Golgi apparatus. Science, 1993, 261, 1280-1281.	6.0	827
7	The Small G Proteins of the Arf Family and Their Regulators. Annual Review of Cell and Developmental Biology, 2007, 23, 579-611.	4.0	520
8	A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties. Cell, 2010, 142, 158-169.	13.5	477
9	Targeting of Golgi-Specific Pleckstrin Homology Domains Involves Both PtdIns 4-Kinase-Dependent and -Independent Components. Current Biology, 2002, 12, 695-704.	1.8	453
10	Organelle identity and the signposts for membrane traffic. Nature, 2005, 438, 597-604.	13.7	439
11	Vesicle tethering complexes in membrane traffic. Journal of Cell Science, 2002, 115, 2627-2637.	1.2	379
12	An investigation of the role of transmembrane domains in Golgi protein retention EMBO Journal, 1995, 14, 4695-4704.	3.5	368
13	Activity of the yeast MNN1 \hat{A} -1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7945-7950.	3.3	352
14	Vesicle tethering complexes in membrane traffic. Journal of Cell Science, 2002, 115, 2627-37.	1.2	330
15	The PACT domain, a conserved centrosomal targeting motif in the coiledâ€coil proteins AKAP450 and pericentrin. EMBO Reports, 2000, 1, 524-529.	2.0	316
16	Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention EMBO Journal, 1991, 10, 3577-3588.	3 . 5	289
17	Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathogens, 2021, 17, e1009246.	2.1	268
18	Arl8 and SKIP Act Together to Link Lysosomes to Kinesin-1. Developmental Cell, 2011, 21, 1171-1178.	3.1	257

#	Article	IF	Citations
19	The Notch signalling regulator Fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DxD. Current Biology, 2000, 10, 813-820.	1.8	253
20	Localization of proteins to the Golgi apparatus. Trends in Cell Biology, 1998, 8, 11-15.	3.6	248
21	Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature Cell Biology, 2004, 6, 405-413.	4.6	236
22	The Sec34/35 Golgi Transport Complex Is Related to the Exocyst, Defining a Family of Complexes Involved in Multiple Steps of Membrane Traffic. Developmental Cell, 2001, 1, 527-537.	3.1	232
23	Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. Journal of Cell Biology, 2006, 172, 645-650.	2.3	232
24	The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science, 2014, 346, 1256898.	6.0	231
25	Accumulation of Caveolin in the Endoplasmic Reticulum Redirects the Protein to Lipid Storage Droplets. Journal of Cell Biology, 2001, 152, 1071-1078.	2.3	230
26	The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Current Biology, 1998, 8, 729-739.	1.8	227
27	Toward a Comprehensive Map of the Effectors of Rab GTPases. Developmental Cell, 2014, 31, 358-373.	3.1	224
28	A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins. Journal of Biological Chemistry, 1998, 273, 19566-19572.	1.6	213
29	Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha -1,6-mannosyltransferase activity. EMBO Journal, 1998, 17, 423-434.	3.5	198
30	An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. Journal of Cell Science, 2006, 119, 1494-1503.	1.2	195
31	Long coiled-coil proteins and membrane traffic. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 71-85.	1.9	188
32	The Golgin Coiled-Coil Proteins of the Golgi Apparatus. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005256-a005256.	2.3	183
33	Sorting of membrane proteins in the secretory pathway. Cell, 1993, 75, 603-605.	13.5	180
34	Molecular genetics: What turns on heat shock genes?. Nature, 1985, 317, 477-478.	13.7	178
35	Dual Targeting of Osh $1p$, a Yeast Homologue of Oxysterol-binding Protein, to both the Golgi and the Nucleus-Vacuole Junction. Molecular Biology of the Cell, 2001, 12, 1633-1644.	0.9	178
36	The GRIP domain – a novel Golgi-targeting domain found in several coiled-coil proteins. Current Biology, 1999, 9, 377-380.	1.8	176

#	Article	IF	Citations
37	Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. Journal of Cell Biology, 2008, 183, 607-615.	2.3	167
38	The ARF-like GTPases Arl1p and Arl3p Act in a Pathway that Interacts with Vesicle-Tethering Factors at the Golgi Apparatus. Current Biology, 2003, 13, 405-410.	1.8	164
39	Membrane Delivery to the Yeast Autophagosome from the Golgi–Endosomal System. Molecular Biology of the Cell, 2010, 21, 3998-4008.	0.9	160
40	Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biology, 2012, 10, 71.	1.7	159
41	Putative Glycosyltransferases and Other Plant Golgi Apparatus Proteins Are Revealed by LOPIT Proteomics Â. Plant Physiology, 2012, 160, 1037-1051.	2.3	149
42	Inositol Phosphorylceramide Synthase Is Located in the Golgi Apparatus of <i>Saccharomyces cerevisiae </i> . Molecular Biology of the Cell, 2000, 11, 2267-2281.	0.9	148
43	The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. Journal of Cell Biology, 2007, 176, 255-261.	2.3	136
44	Structural Basis for Arl1-Dependent Targeting of Homodimeric GRIP Domains to the Golgi Apparatus. Molecular Cell, 2003, 12, 863-874.	4.5	135
45	Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends in Cell Biology, 2016, 26, 399-408.	3.6	125
46	The Saccharomyces cerevisiae Protein Mnn10p/Bed1p Is a Subunit of a Golgi Mannosyltransferase Complex. Journal of Biological Chemistry, 1999, 274, 6579-6585.	1.6	117
47	CASP, the Alternatively Spliced Product of the Gene Encoding the CCAAT-Displacement Protein Transcription Factor, Is a Golgi Membrane Protein Related to Giantin. Molecular Biology of the Cell, 2002, 13, 3761-3774.	0.9	114
48	The Arl4 Family of Small G Proteins Can Recruit the Cytohesin Arf6 Exchange Factors to the Plasma Membrane. Current Biology, 2007, 17, 711-716.	1.8	112
49	Identification of the MNN2 and MNN5Mannosyltransferases Required for Forming and Extending the Mannose Branches of the Outer Chain Mannans of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 26836-26843.	1.6	107
50	A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO Journal, 2010, 29, 304-314.	3.5	100
51	The MRH domain suggests a shared ancestry for the mannose 6-phosphate receptors and other N-glycan-recognising proteins. Current Biology, 2001, 11, R499-R501.	1.8	97
52	\hat{l}^3 -Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Molecular Biology of the Cell, 2014, 25, 2039-2050.	0.9	96
53	What can yeast tell us aboutN-linked glycosylation in the Golgi apparatus?. FEBS Letters, 2001, 498, 223-227.	1.3	94
54	The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. Journal of Cell Biology, 2004, 167, 281-292.	2.3	87

#	Article	IF	CITATIONS
55	A Systematic Approach to Pair Secretory Cargo Receptors with Their Cargo Suggests a Mechanism for Cargo Selection by Erv14. PLoS Biology, 2012, 10, e1001329.	2.6	87
56	Expression cloning of the murine interferon gamma receptor cDNA Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9248-9252.	3.3	85
57	An antibody toolkit for the study of membrane traffic in <i>Drosophila melanogaster</i> . Biology Open, 2016, 5, 987-992.	0.6	82
58	Organelle identity and the organization of membrane traffic. Nature Cell Biology, 2004, 6, 469-472.	4.6	78
59	Selective Export of HLA-F by Its Cytoplasmic Tail. Journal of Immunology, 2006, 176, 6464-6472.	0.4	72
60	A comparison of the transmembrane domains of Golgi and plasma membrane proteins. Biochemical Society Transactions, 1995, 23, 527-530.	1.6	68
61	In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. ELife, 2019, 8, .	2.8	67
62	Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation. Nature Communications, 2021, 12, 5333.	5 . 8	64
63	The Components of the Saccharomyces cerevisiaeMannosyltransferase Complex M-Pol I Have Distinct Functions in Mannan Synthesis. Journal of Biological Chemistry, 2002, 277, 44801-44808.	1.6	61
64	The small G protein Arl1 directs the trans-Golgi–specific targeting of the Arf1 exchange factors BIG1 and BIG2. Journal of Cell Biology, 2012, 196, 327-335.	2.3	61
65	The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs. BMC Biology, 2017, 15, 3.	1.7	61
66	Organelle identity and the targeting of peripheral membrane proteins. Current Opinion in Cell Biology, 2002, 14, 506-514.	2.6	60
67	The two TRAPP complexes of metazoans have distinct roles and act on different Rab GTPases. Journal of Cell Biology, 2018, 217, 601-617.	2.3	60
68	TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nature Cell Biology, 2017, 19, 1424-1432.	4.6	58
69	The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster. Journal of Cell Biology, 2005, 169, 953-963.	2.3	57
70	A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Letters, 2019, 593, 2452-2465.	1.3	52
71	Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nature Communications, 2021, 12, 1564.	5.8	50
72	A yeast homolog of the mammalian mannose 6-phosphate receptors contributes to the sorting of vacuolar hydrolases. Current Biology, 2001, 11, 1074-1078.	1.8	48

#	Article	IF	CITATIONS
73	The Arf-like GTPase Arl1 and its role in membrane traffic. Biochemical Society Transactions, 2005, 33, 601-605.	1.6	47
74	Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nature Communications, 2020, 11, 5987.	5.8	45
75	The Arf family G protein Arl1 is required for secretory granule biogenesis in <i>Drosophila</i> Journal of Cell Science, 2014, 127, 2151-60.	1.2	38
76	Mon2, a Relative of Large Arf Exchange Factors, Recruits Dop1 to the Golgi Apparatus. Journal of Biological Chemistry, 2006, 281, 2273-2280.	1.6	37
77	Intra-Golgi Transport Inhibition by Megalomicin. Journal of Biological Chemistry, 1996, 271, 3719-3726.	1.6	34
78	Transport carrier tethering $\hat{a}\in$ how vesicles are captured by organelles. Current Opinion in Cell Biology, 2019, 59, 140-146.	2.6	34
79	The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in <i>Drosophila</i> . Biology Open, 2018, 7, .	0.6	33
80	Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles. Current Biology, 2020, 30, 2974-2983.e6.	1.8	33
81	The Golgi apparatus: defining the identity of Golgi membranes. Current Opinion in Cell Biology, 2005, 17, 395-401.	2.6	31
82	Golgins. Current Biology, 2018, 28, R374-R376.	1.8	31
83	Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi. Cell Reports, 2016, 16, 839-850.	2.9	29
84	Earthworms and lipid couriers. Nature, 2003, 426, 775-776.	13.7	28
85	The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biology Open, 2015, 4, 474-481.	0.6	27
86	An N-acetylglucosaminyltransferase of the Golgi apparatus of the yeast Saccharomyces cerevisiae that can modify N-linked glycans. Glycobiology, 2003, 13, 581-589.	1.3	26
87	Cryoâ€EM structure of metazoan TRAPPIII, the multiâ€subunit complex that activates the GTPase Rab1. EMBO Journal, 2021, 40, e107608.	3.5	26
88	GOLPH3 and GOLPH3L are broad-spectrum COPI adaptors for sorting into intra-Golgi transport vesicles. Journal of Cell Biology, 2021, 220, .	2.3	26
89	More than one way to replicate the Golgi apparatus. Nature Cell Biology, 2002, 4, E223-E224.	4.6	20
90	Identification of a Guanine Nucleotide Exchange Factor for Arf3, the Yeast Orthologue of Mammalian Arf6. PLoS ONE, 2007, 2, e842.	1.1	19

#	Article	IF	CITATIONS
91	Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI. Traffic, 2018, 19, 370-379.	1.3	15
92	Q&A: What is the Golgi apparatus, and why are we asking?. BMC Biology, 2011, 9, 63.	1.7	12
93	GM food debate. Lancet, The, 1999, 354, 1727-1728.	6.3	8
94	Open questions: What is there left for cell biologists to do?. BMC Biology, 2013, 11, 16.	1.7	6
95	Signal transduction meets the secretory pathway. Current Biology, 1992, 2, 633-635.	1.8	4
96	Signal recognition revisited. Nature, 1991, 354, 437-438.	13.7	3
97	Sexist ads. Nature, 1986, 321, 106-106.	13.7	1
98	The function of oxysterol binding protein homologues in budding yeast. Biochemical Society Transactions, 1999, 27, A100-A100.	1.6	0
99	Sean Munro: Revealing the Golgi's true identity. Journal of Cell Biology, 2011, 192, 4-5.	2.3	0
100	Proteins, Sorted. The Secretory Pathway from the Endoplasmic Reticulum to the Golgi, and Beyond. , $1997, 163-174$.		0
101	20 years of Developmental Cell: Looking back. Developmental Cell, 2021, 56, 3181-3184.	3.1	O