Charles H Langley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 2014, 15, R59.	9.6	424
2	Genomic Variation in Natural Populations of <i>Drosophila melanogaster</i> . Genetics, 2012, 192, 533-598.	2.9	325
3	The <i>Drosophila</i> Genome Nexus: A Population Genomic Resource of 623 <i>Drosophila melanogaster</i> Genomes, Including 197 from a Single Ancestral Range Population. Genetics, 2015, 199, 1229-1241.	2.9	273
4	The walnut (<i>Juglans regia</i>) genome sequence reveals diversity in genes coding for the biosynthesis of nonâ€structural polyphenols. Plant Journal, 2016, 87, 507-532.	5.7	233
5	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	12.6	204
6	Two Sites in the Delta Gene Region Contribute to Naturally Occurring Variation in Bristle Number in Drosophila melanogaster. Genetics, 1998, 149, 999-1017.	2.9	189
7	Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.	2.9	169
8	DNA Polymorphism in Lycopersicon and Crossing-Over per Physical Length. Genetics, 1998, 150, 1585-1593.	2.9	151
9	Genetic Interactions Between Naturally Occuning Alleles at Quantitative Trait Loci and Mutant Alleles at Candidate Loci Affecting Bristle Number in <i>Drosophila melanogaster</i> . Genetics, 1996, 144, 1497-1510.	2.9	145
10	Linkage Disequilibria and the Site Frequency Spectra in the <i>su(s)</i> and <i>su(wa</i>) Regions of the <i>Drosophila melanogaster X</i> Chromosome. Genetics, 2000, 156, 1837-1852.	2.9	137
11	The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.	1.8	103
12	Both Naturally Occurring Insertions of Transposable Elements and Intermediate Frequency Polymorphisms at the achaete-scute Complex Are Associated With Variation in Bristle Number in Drosophila melanogaster. Genetics, 2000, 154, 1255-1269.	2.9	99
13	First Draft Assembly and Annotation of the Genome of a California Endemic Oak <i>Quercus lobata</i> Née (Fagaceae). G3: Genes, Genomes, Genetics, 2016, 6, 3485-3495.	1.8	95
14	Genetic Variation in Rates of Nondisjunction: Association of Two Naturally Occurring Polymorphisms in the Chromokinesin nod With Increased Rates of Nondisjunction in Drosophila melanogaster. Genetics, 1999, 152, 1605-1614.	2.9	93
15	A new genomic tool for walnut (Juglans regia L.): development and validation of the highâ€density Axiomâ"¢ J.Âregia 700K SNP genotyping array. Plant Biotechnology Journal, 2019, 17, 1027-1036.	8.3	79
16	Genomic Variation Among and Within Six <i>Juglans</i> Species. G3: Genes, Genomes, Genetics, 2018, 8, 2153-2165.	1.8	73
17	An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. GigaScience, 2017, 6, 1-4.	6.4	71
18	Genomic architecture of complex traits in loblolly pine. New Phytologist, 2019, 221, 1789-1801.	7.3	60

CHARLES H LANGLEY

#	Article	IF	CITATIONS
19	Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. ELife, 2019, 8, .	6.0	54
20	Circumventing Heterozygosity: Sequencing the Amplified Genome of a Single Haploid <i>Drosophila melanogaster</i> Embryo. Genetics, 2011, 188, 239-246.	2.9	51
21	Assessing the Gene Content of the Megagenome: Sugar Pine (<i>Pinus lambertiana</i>). G3: Genes, Genomes, Genetics, 2016, 6, 3787-3802.	1.8	51
22	Development of a highly efficient Axiomâ,,¢ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics, 2019, 20, 331.	2.8	40
23	Nucleosomes Shape DNA Polymorphism and Divergence. PLoS Genetics, 2014, 10, e1004457.	3.5	38
24	quemao, a Drosophila Bristle Locus, Encodes Geranylgeranyl Pyrophosphate Synthase. Genetics, 1998, 149, 1051-1061.	2.9	37
25	Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. Plant Journal, 2020, 104, 365-376.	5.7	32
26	Comparative genomics of six <i>Juglans</i> species reveals diseaseâ€associated gene family contractions. Plant Journal, 2020, 102, 410-423.	5.7	25
27	Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genetics and Genomes, 2013, 9, 1529-1535.	1.6	23
28	Classic Weinstein: Tetrad Analysis, Genetic Variation and Achiasmate Segregation in Drosophila and Humans. Genetics, 1999, 152, 1615-1629.	2.9	21
29	From Pine Cones to Read Clouds: Rescaffolding the Megagenome of Sugar Pine (Pinus lambertiana). G3: Genes, Genomes, Genetics, 2017, 7, 1563-1568.	1.8	19
30	Algorithms to Distinguish the Role of Gene-Conversion from Single-Crossover Recombination in the Derivation of SNP Sequences in Populations. Journal of Computational Biology, 2007, 14, 1273-1286.	1.6	14
31	Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. Genes, 2021, 12, 110.	2.4	14
32	Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics. Genetics, 2016, 203, 1497-1503.	2.9	12
33	Restriction map polymorphism in the forked and vermilion regions of Drosophila melanogaster Japanese Journal of Genetics, 1994, 69, 297-305.	1.0	6
34	Endogenous proviruses as "mementosâ€ ? . Nature, 1997, 388, 840-840.	27.8	5
35	SNPs in a Large Genomic Scaffold Are Strongly Associated with <i>Cr1^R</i> , Major Gene for Resistance to White Pine Blister Rust in Range-Wide Samples of Sugar Pine (<i>Pinus) Tj ETQq1 1 0.784314</i>	rgBiI4Ove	rloak 10 Tf 50