Aaron M Neiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5554387/publications.pdf

Version: 2024-02-01

186265 3,353 58 28 citations h-index papers

g-index 75 75 75 3184 docs citations times ranked citing authors all docs

149698

56

#	Article	IF	CITATIONS
1	A Conserved Machinery Underlies the Synthesis of a Chitosan Layer in the <i>Candida</i> Chlamydospore Cell Wall. MSphere, 2021, 6, .	2.9	9
2	Genetic Dissection of Vps13 Regulation in Yeast Using Disease Mutations from Human Orthologs. International Journal of Molecular Sciences, 2021, 22, 6200.	4.1	8
3	Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genetics, 2021, 17, e1009727.	3.5	12
4	A Noncanonical Hippo Pathway Regulates Spindle Disassembly and Cytokinesis During Meiosis in <i>Saccharomyces cerevisiae /i>. Genetics, 2020, 216, 447-462.</i>	2.9	4
5	XK is a partner for VPS13A: a molecular link between Chorea-Acanthocytosis and McLeod Syndrome. Molecular Biology of the Cell, 2020, 31, 2425-2436.	2.1	42
6	Unconventional Constituents and Shared Molecular Architecture of the Melanized Cell Wall of C. neoformans and Spore Wall of S. cerevisiae. Journal of Fungi (Basel, Switzerland), 2020, 6, 329.	3.5	21
7	Fungal Pathogens: Shape-Shifting Invaders. Trends in Microbiology, 2020, 28, 922-933.	7.7	27
8	The meiosis-specific Cdc20 family-member Ama1 promotes binding of the Ssp2 activator to the Smk1 MAP kinase. Molecular Biology of the Cell, 2018, 29, 66-74.	2.1	6
9	Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast. Molecular and Cellular Biology, 2017, 37, .	2.3	17
10	Congenital valvular defects associated with deleterious mutations in the PLD1 gene. Journal of Medical Genetics, 2017, 54, 278-286.	3.2	36
11	Dynamic localization of a yeast development–specific PP1 complex during prospore membrane formation is dependent on multiple localization signals and complex formation. Molecular Biology of the Cell, 2017, 28, 3881-3895.	2.1	9
12	In vitro reconstitution of the yeast spore wall dityrosine layer discloses the mechanism of its assembly. Journal of Biological Chemistry, 2017, 292, 15880-15891.	3.4	8
13	Long-Chain Polyprenols Promote Spore Wall Formation in <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 207, 1371-1386.	2.9	18
14	A Novel Assay Reveals a Maturation Process during Ascospore Wall Formation. Journal of Fungi (Basel, Switzerland), 2017, 3, 54.	3.5	5
15	Developmentally regulated internal transcription initiation during meiosis in budding yeast. PLoS ONE, 2017, 12, e0188001.	2.5	16
16	Eighth International Chorea-Acanthocytosis Symposium: Summary of Workshop Discussion and Action Points. Tremor and Other Hyperkinetic Movements, 2017, 7, 428.	2.0	2
17	Examination and Disruption of the Yeast Cell Wall. Cold Spring Harbor Protocols, 2016, 2016, pdb.top078659.	0.3	3
18	Assay for Spore Wall Integrity Using a Yeast Predator. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot085258.	0.3	1

#	Article	IF	Citations
19	Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Molecular Biology of the Cell, 2016, 27, 2435-2449.	2.1	143
20	Post-transcriptional regulation in budding yeast meiosis. Current Genetics, 2016, 62, 313-315.	1.7	19
21	Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genetics, 2016, 12, e1006226.	3.5	76
22	Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast. Molecular and Cellular Biology, 2015, 35, 3448-3458.	2.3	28
23	A Conserved Function in Phosphatidylinositol Metabolism for Mammalian Vps13 Family Proteins. PLoS ONE, 2015, 10, e0124836.	2.5	27
24	A Genome-Wide Screen for Sporulation-Defective Mutants in <i>Schizosaccharomyces pombe</i> Genes, Genomes, Genetics, 2014, 4, 1173-1182.	1.8	15
25	A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress–induced membrane biogenesis. Molecular Biology of the Cell, 2014, 25, 712-727.	2.1	71
26	A Visual Screen of Protein Localization during Sporulation Identifies New Components of Prospore Membrane-Associated Complexes in Budding Yeast. Eukaryotic Cell, 2014, 13, 383-391.	3.4	26
27	<i>SPO71</i> Encodes a Developmental Stage-Specific Partner for Vps13 in Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 1530-1537.	3.4	41
28	A Highly Redundant Gene Network Controls Assembly of the Outer Spore Wall in S. cerevisiae. PLoS Genetics, 2013, 9, e1003700.	3.5	52
29	<i>VPS13</i> Regulates Membrane Morphogenesis During Sporulation in <i>Saccharomyces cerevisiae</i> Journal of Cell Science, 2012, 125, 3004-11.	2.0	90
30	Sporulation in the Budding Yeast <i>Saccharomyces cerevisiae</i> . Genetics, 2011, 189, 737-765.	2.9	324
31	The JmjC domain of Gis1 is dispensable for transcriptional activation. FEMS Yeast Research, 2010, 10, 793-801.	2.3	11
32	Vesicle Docking to the Spindle Pole Body Is Necessary to Recruit the Exocyst During Membrane Formation in (i) Saccharomyces cerevisiae (i). Molecular Biology of the Cell, 2010, 21, 3693-3707.	2.1	19
33	Membrane assembly modulates the stability of the meiotic spindle-pole body. Journal of Cell Science, 2010, 123, 2481-2490.	2.0	9
34	A Screen for Spore Wall Permeability Mutants Identifies a Secreted Protease Required for Proper Spore Wall Assembly. PLoS ONE, 2009, 4, e7184.	2.5	36
35	The Anaphase Promoting Complex Targeting Subunit Ama1 Links Meiotic Exit to Cytokinesis during Sporulation in <i>Saccharomyces cerevisiae</i> Molecular Biology of the Cell, 2009, 20, 134-145.	2.1	65
36	Protein Phosphatase Type 1-Interacting Protein Ysw1 Is Involved in Proper Septin Organization and Prospore Membrane Formation during Sporulation. Eukaryotic Cell, 2009, 8, 1027-1037.	3.4	11

3

#	Article	IF	Citations
37	Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae. BMC Cell Biology, 2008, 9, 55.	3.0	27
38	Binding interactions control SNARE specificity in vivo. Journal of Cell Biology, 2008, 183, 1089-1100.	5.2	15
39	The Yeast Spore Wall Enables Spores to Survive Passage through the Digestive Tract of Drosophila. PLoS ONE, 2008, 3, e2873.	2.5	149
40	Cdc15 Is Required for Spore Morphogenesis Independently of Cdc14 in <i>Saccharomyces cerevisiae</i> . Genetics, 2007, 177, 281-293.	2.9	22
41	Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. Journal of Cell Science, 2007, 120, 908-916.	2.0	50
42	Alternative Modes of Organellar Segregation during Sporulation in <i>Saccharomyces cerevisiae</i> Eukaryotic Cell, 2007, 6, 2009-2017.	3.4	52
43	GAS2 and GAS4, a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 302-316.	3.4	48
44	<i>In Vitro </i> Fusion Catalyzed by the Sporulationâ€Specific tâ€SNARE Lightâ€Chain Spo20p is Stimulated by Phosphatidic Acid. Traffic, 2007, 8, 1630-1643.	2.7	49
45	Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. Journal of Cell Science, 2006, 119, 1406-1415.	2.0	110
46	Ascospore Formation in the Yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2005, 69, 565-584.	6.6	192
47	Interspore bridges: a new feature of the Saccharomyces cerevisiae spore wall. Microbiology (United) Tj ETQq1 1 ().784314 1.8	rgBT /Overlo
48	Positive and Negative Regulation of a SNARE Protein by Control of Intracellular Localization. Molecular Biology of the Cell, 2004, 15, 1802-1815.	2.1	168
49	Regulation of Spindle Pole Function by an Intermediary Metabolite. Molecular Biology of the Cell, 2004, 15, 2606-2616.	2.1	23
50	Genetic Evidence of a Role for Membrane Lipid Composition in the Regulation of Soluble NEM-Sensitive Factor Receptor Function in Saccharomyces cerevisiae. Genetics, 2004, 166, 89-97.	2.9	26
51	Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae. Eukaryotic Cell, 2004, 3, 1464-1475.	3.4	103
52	Ady4p and Spo74p Are Components of the Meiotic Spindle Pole Body That Promote Growth of the Prospore Membrane in Saccharomyces cerevisiae. Eukaryotic Cell, 2003, 2, 431-445.	3.4	48
53	Ady3p Links Spindle Pole Body Function to Spore Wall Synthesis in <i>Saccharomyces cerevisiae</i> Genetics, 2002, 160, 1439-1450.	2.9	39
54	<i>SPO21</i> ls Required for Meiosis-specific Modification of the Spindle Pole Body in Yeast. Molecular Biology of the Cell, 2001, 12, 1611-1621.	2.1	53

#	Article	IF	CITATIONS
55	A Gip1p–Glc7p phosphatase complex regulates septin organization and spore wall formation. Journal of Cell Biology, 2001, 155, 797-808.	5.2	88
56	Identification of Domains Required for Developmentally Regulated SNARE Function in Saccharomyces cerevisiae. Genetics, 2000, 155, 1643-1655.	2.9	103
57	Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 1998, 394, 592-595.	27.8	433
58	Prospore Membrane Formation Defines a Developmentally Regulated Branch of the Secretory Pathway in Yeast. Journal of Cell Biology, 1998, 140, 29-37.	5.2	191