List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/555408/publications.pdf Version: 2024-02-01

IENIC DETTIC

#	Article	IF	CITATIONS
1	Identification of distinct cytotoxic granules as the origin of supramolecular attack particles in T lymphocytes. Nature Communications, 2022, 13, 1029.	12.8	24
2	Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini. Frontiers in Molecular Neuroscience, 2022, 15, 674243.	2.9	1
3	P38αâ€MAPK phosphorylates Snapin and reduces Snapinâ€mediated BACE1 transportation in APPâ€ŧransgenic mice. FASEB Journal, 2021, 35, e21691.	0.5	7
4	Investigation of Cytotoxic T Lymphocyte Function during Allorejection in the Anterior Chamber of the Eye. International Journal of Molecular Sciences, 2020, 21, 4660.	4.1	2
5	SMAPs: sweet carriers of lethal cargo for CTLâ€mediated killing. Immunology and Cell Biology, 2020, 98, 524-527.	2.3	2
6	Alternative UNC13D Promoter Encodes a Functional Munc13-4 Isoform Predominantly Expressed in Lymphocytes and Platelets. Frontiers in Immunology, 2020, 11, 1154.	4.8	2
7	Cytotoxic Granule Trafficking and Fusion in Synaptotagmin7-Deficient Cytotoxic T Lymphocytes. Frontiers in Immunology, 2020, 11, 1080.	4.8	5
8	Live Neuron High-Content Screening Reveals Synaptotoxic Activity in Alzheimer Mouse Model Homogenates. Scientific Reports, 2020, 10, 3412.	3.3	8
9	Various Stages of Immune Synapse Formation Are Differently Dependent on the Strength of the TCR Stimulus. International Journal of Molecular Sciences, 2020, 21, 2475.	4.1	6
10	Role of V-ATPase a3-Subunit in Mouse CTL Function. Journal of Immunology, 2020, 204, 2818-2828.	0.8	6
11	Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. ELife, 2020, 9, .	6.0	7
12	Cytotoxic Granule Exocytosis From Human Cytotoxic T Lymphocytes Is Mediated by VAMP7. Frontiers in Immunology, 2019, 10, 1855.	4.8	15
13	An Alternative Exon of CAPS2 Influences Catecholamine Loading into LDCVs of Chromaffin Cells. Journal of Neuroscience, 2019, 39, 18-27.	3.6	16
14	Cytotoxic granule endocytosis depends on the Flower protein. Journal of Cell Biology, 2018, 217, 667-683.	5.2	14
15	Paralogs of the Calcium-Dependent Activator Protein for Secretion Differentially Regulate Synaptic Transmission and Peptide Secretion in Sensory Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 304.	3.7	11
16	AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nature Communications, 2018, 9, 3489.	12.8	55
17	Synaptic Transmission in the Immune System. E-Neuroforum, 2017, 23, A167-A174.	0.1	0
18	Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cellular and Molecular Life Sciences, 2017, 74, 399-408.	5.4	11

#	Article	IF	CITATIONS
19	Synaptische Transmission im Immunsystem. E-Neuroforum, 2017, 23, 223-230.	0.1	0
20	Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. ELife, 2017, 6, .	6.0	39
21	Simultaneous Membrane Capacitance Measurements and TIRF Microscopy to Study Granule Trafficking at Immune Synapses. Methods in Molecular Biology, 2017, 1584, 157-169.	0.9	4
22	The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. Journal of Neuroscience, 2016, 36, 2473-2493.	3.6	29
23	Syntaxin 8 is required for efficient lytic granule trafficking in cytotoxic T lymphocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1653-1664.	4.1	20
24	Exocytosis in nonâ€neuronal cells. Journal of Neurochemistry, 2016, 137, 849-859.	3.9	26
25	Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes. Journal of Immunology, 2016, 197, 2473-2484.	0.8	28
26	H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast. Scientific Reports, 2016, 6, 31105.	3.3	28
27	Behavior and Properties of Mature Lytic Granules at the Immunological Synapse of Human Cytotoxic T Lymphocytes. PLoS ONE, 2015, 10, e0135994.	2.5	21
28	VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. Journal of Cell Biology, 2015, 210, 135-151.	5.2	74
29	Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. ELife, 2015, 4, .	6.0	47
30	Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain. Cell Reports, 2014, 9, 902-909.	6.4	23
31	Syntaxin11 serves as a tâ€ <scp>SNARE</scp> for the fusion of lytic granules in human cytotoxic <scp>T</scp> lymphocytes. European Journal of Immunology, 2014, 44, 573-584.	2.9	34
32	Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. Journal of Cell Biology, 2014, 204, 1123-1140.	5.2	58
33	Secretion and Immunogenicity of the Meningioma-Associated Antigen TXNDC16. Journal of Immunology, 2014, 193, 3146-3154.	0.8	7
34	Deciphering Dead-End Docking of Large Dense Core Vesicles in Bovine Chromaffin Cells. Journal of Neuroscience, 2013, 33, 17123-17137.	3.6	21
35	Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells. Cell Calcium, 2013, 54, 105-110.	2.4	5
36	Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nature Communications, 2013, 4, 1439.	12.8	65

#	Article	IF	CITATIONS
37	In the Crosshairs: Investigating Lytic Granules by High-Resolution Microscopy and Electrophysiology. Frontiers in Immunology, 2013, 4, 411.	4.8	10
38	Different Munc13 Isoforms Function as Priming Factors in Lytic Granule Release from Murine Cytotoxic T Lymphocytes. Traffic, 2013, 14, 798-809.	2.7	28
39	Differential effects of Sec61α-, Sec62- and Sec63-depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. Journal of Cell Science, 2012, 125, 1958-69.	2.0	135
40	Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they?. Cell Calcium, 2012, 52, 303-312.	2.4	18
41	New Photolabile BAPTA-Based Ca ²⁺ Cages with Improved Photorelease. Journal of the American Chemical Society, 2012, 134, 7733-7740.	13.7	39
42	Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming. PLoS ONE, 2012, 7, e36416.	2.5	14
43	SNARE protein expression and localization in human cytotoxic T lymphocytes. European Journal of Immunology, 2012, 42, 470-475.	2.9	37
44	On the possible effects of nanoparticles on neuronal feedback circuits: A modeling study. , 2011, , .		1
45	Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO Journal, 2011, 30, 3895-3912.	7.8	181
46	Syntaxin7 Is Required for Lytic Granule Release from Cytotoxic T Lymphocytes. Traffic, 2011, 12, 890-901.	2.7	44
47	Vesicle Pools: Lessons from Adrenal Chromaffin Cells. Frontiers in Synaptic Neuroscience, 2011, 3, 2.	2.5	41
48	Docking of Lytic Granules at the Immunological Synapse in Human CTL Requires Vti1b-Dependent Pairing with CD3 Endosomes. Journal of Immunology, 2011, 186, 6894-6904.	0.8	55
49	Tomosyn Expression Pattern in the Mouse Hippocampus Suggests Both Presynaptic and Postsynaptic Functions. Frontiers in Neuroanatomy, 2010, 4, 149.	1.7	24
50	Two distinct secretory vesicle–priming steps in adrenal chromaffin cells. Journal of Cell Biology, 2010, 190, 1067-1077.	5.2	58
51	SNARE Force Synchronizes Synaptic Vesicle Fusion and Controls the Kinetics of Quantal Synaptic Transmission. Journal of Neuroscience, 2010, 30, 10272-10281.	3.6	45
52	Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells. Journal of Cell Science, 2010, 123, 1940-1947.	2.0	38
53	Modeling the effects of nanoparticles on neuronal cells: From ionic channels to network dynamics. , 2010, 2010, 3816-9.		7
54	APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy. Acta Neuropathologica, 2009, 117, 677-685.	7.7	74

#	Article	IF	CITATIONS
55	The Ca2+-dependent Activator Protein for Secretion CAPS: Do I Dock or do I Prime?. Molecular Neurobiology, 2009, 39, 62-72.	4.0	23
56	The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8434-8439.	7.1	50
57	CAPS Facilitates Filling of the Rapidly Releasable Pool of Large Dense-Core Vesicles. Journal of Neuroscience, 2008, 28, 5594-5601.	3.6	75
58	Intraneuronal β-Amyloid Is a Major Risk Factor – Novel Evidence from the APP/PS1KI Mouse Model. Neurodegenerative Diseases, 2008, 5, 140-142.	1.4	18
59	Primed Vesicles Can Be Distinguished from Docked Vesicles by Analyzing Their Mobility. Journal of Neuroscience, 2007, 27, 1386-1395.	3.6	80
60	T cell activation requires mitochondrial translocation to the immunological synapse. Proceedings of the United States of America, 2007, 104, 14418-14423.	7.1	289
61	Multiple functional domains are involved in tomosyn regulation of exocytosis. Journal of Neurochemistry, 2007, 103, 604-616.	3.9	43
62	Quantifying Exocytosis by Combination of Membrane Capacitance Measurements and Total Internal Reflection Fluorescence Microscopy in Chromaffin Cells. PLoS ONE, 2007, 2, e505.	2.5	37
63	RGS2 Determines Short-Term Synaptic Plasticity in Hippocampal Neurons by Regulating Gi/o- Mediated Inhibition of Presynaptic Ca2+ Channels. Neuron, 2006, 51, 575-586.	8.1	80
64	Vesicle pools, docking, priming, and release. Cell and Tissue Research, 2006, 326, 393-407.	2.9	91
65	Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation. Journal of Neuroscience, 2006, 26, 632-643.	3.6	108
66	v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO Journal, 2005, 24, 2114-2126.	7.8	193
67	Identification of the Minimal Protein Domain Required for Priming Activity of Munc13-1. Current Biology, 2005, 15, 2243-2248.	3.9	119
68	The Role of Snapin in Neurosecretion: Snapin Knock-Out Mice Exhibit Impaired Calcium-Dependent Exocytosis of Large Dense-Core Vesicles in Chromaffin Cells. Journal of Neuroscience, 2005, 25, 10546-10555.	3.6	87
69	CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles. Neuron, 2005, 46, 75-88.	8.1	101
70	Effects of PKA-Mediated Phosphorylation of Snapin on Synaptic Transmission in Cultured Hippocampal Neurons. Journal of Neuroscience, 2004, 24, 6476-6481.	3.6	59
71	Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2578-2583.	7.1	104
72	Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25. Neuron, 2004, 41, 417-429.	8.1	204

#	Article	IF	CITATIONS
73	Molecular mechanisms of active zone function. Current Opinion in Neurobiology, 2003, 13, 509-519.	4.2	122
74	Emerging Roles of Presynaptic Proteins in Ca++-Triggered Exocytosis. Science, 2002, 298, 781-785.	12.6	303
75	The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1627-1632.	7.1	156
76	Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at Ser ¹⁸⁷ Potentiates Vesicle Recruitment. Journal of Neuroscience, 2002, 22, 9278-9286.	3.6	167
77	Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming. Neuron, 2001, 30, 183-196.	8.1	372
78	Munc18-1 Promotes Large Dense-Core Vesicle Docking. Neuron, 2001, 31, 581-592.	8.1	329
79	A Trimeric Protein Complex Functions as a Synaptic Chaperone Machine. Neuron, 2001, 31, 987-999.	8.1	196
80	Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nature Cell Biology, 2001, 3, 331-338.	10.3	156
81	Regulation of transmitter release by Unc-13 and its homologues. Current Opinion in Neurobiology, 2000, 10, 303-311.	4.2	204
82	Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO Journal, 2000, 19, 3586-3596.	7.8	200
83	Synaptic Localization and Presynaptic Function of Calcium Channel β4-Subunits in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2000, 275, 37807-37814.	3.4	56
84	Syntaphilin. Neuron, 2000, 25, 191-201.	8.1	90
85	Exocytotic mechanism studied by truncated and zero layer mutants of the C-terminus of SNAP-25. EMBO Journal, 2000, 19, 1279-1289.	7.8	87
86	A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1094-1099.	7.1	59
87	An efficient method for infection of adrenal chromaffin cells using the Semliki Forest virus gene express1on system. European Journal of Cell Biology, 1999, 78, 525-532.	3.6	97
88	Munc13-1 Is a Presynaptic Phorbol Ester Receptor that Enhances Neurotransmitter Release. Neuron, 1998, 21, 123-136.	8.1	387
89	Alteration of Ca ²⁺ Dependence of Neurotransmitter Release by Disruption of Ca ²⁺ Channel/Syntaxin Interaction. Journal of Neuroscience, 1997, 17, 6647-6656.	3.6	176
90	Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7363-7368.	7.1	283

#	Article	IF	CITATIONS
91	Functional characterization of Kv channel betaâ€subunits from rat brain Journal of Physiology, 1996, 493, 625-633.	2.9	192
92	Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature, 1996, 379, 451-454.	27.8	340
93	Biochemical properties and subcellular distribution of the BI and rbA isoforms of alpha 1A subunits of brain calcium channels Journal of Cell Biology, 1996, 134, 511-528.	5.2	71
94	Molecular and functional characterization of a rat brain Kv \hat{l}^2 3 potassium channel subunit. FEBS Letters, 1995, 377, 383-389.	2.8	94
95	Oligomeric and Subunit Structures of Voltage-Gated Potassium Channels. Medical Science Symposia Series, 1995, , 17-22.	0.0	0
96	Primary structure of a beta subunit of alpha-dendrotoxin-sensitive K+ channels from bovine brain Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1637-1641.	7.1	178
97	The inactivation behaviour of voltage-gated K-channels may be determined by association of α- and β-subunits. Journal of Physiology (Paris), 1994, 88, 173-180.	2.1	32
98	Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature, 1994, 369, 289-294.	27.8	833
99	Identification of a syntaxin-binding site on N-Type calcium channels. Neuron, 1994, 13, 1303-1313.	8.1	417
100	Oligomeric and subunit structures of neuronal voltage-sensitive K+ channels. Biochemical Society Transactions, 1994, 22, 473-478.	3.4	32
101	Characterization of a Shaw-related potassium channel family in rat brain EMBO Journal, 1992, 11, 2473-2486.	7.8	183
102	Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. FEBS Letters, 1991, 278, 211-216.	2.8	125