
Giovanni Ristori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5553466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain, 2011, 134, 542-554.	7.6	211
2	Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2015, 14, 985-991.	10.2	163
3	Effects of Bacille Calmette-Guérin after the first demyelinating event in the CNS. Neurology, 2014, 82, 41-48.	1.1	128
4	Plasmacytoid Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2008, 67, 388-401.	1.7	110
5	Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: A pilot study. Multiple Sclerosis Journal, 2017, 23, 442-446.	3.0	107
6	Serum chemical elements and oxidative status in Alzheimer's disease, Parkinson disease and multiple sclerosis. NeuroToxicology, 2007, 28, 450-456.	3.0	104
7	Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. European Journal of Immunology, 1993, 23, 1232-1239.	2.9	74
8	Multiple sclerosis in twins from continental Italy and Sardinia: A nationwide study. Annals of Neurology, 2006, 59, 27-34.	5.3	70
9	Twins: mirrors of the immune system. Trends in Immunology, 2000, 21, 342-347.	7.5	66
10	A "Candidate-Interactome―Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis. PLoS ONE, 2013, 8, e63300.	2.5	66
11	T-lymphocyte reactivity to the recombinant mycobacterial 65- and 70-kDa heat shock proteins in multiple sclerosis. Journal of Autoimmunity, 1992, 5, 691-702.	6.5	61
12	The immune response to Mycobacterial 70-kDa heat shock proteins frequently involves autoreactive T cells and is quantitatively disregulated in multiple sclerosis. Journal of Neuroimmunology, 1996, 65, 143-153.	2.3	58
13	EBNA2 Binds to Genomic Intervals Associated with Multiple Sclerosis and Overlaps with Vitamin D Receptor Occupancy. PLoS ONE, 2015, 10, e0119605.	2.5	49
14	The Italian Twin Project: From the Personal Identification Number to a National Twin Registry. Twin Research and Human Genetics, 2002, 5, 382-386.	1.0	46
15	Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System. Frontiers in Neuroanatomy, 2020, 14, 17.	1.7	46
16	Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Current Opinion in Immunology, 2018, 55, 89-96.	5.5	45
17	γδT Cell Receptor Analysis Supports a Role for HSP 70 Selection of Lymphocytes in Multiple Sclerosis Lesions. Molecular Medicine, 1995, 1, 554-562.	4.4	44
18	Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology, 2015, 84, 1362-1368.	1.1	44

#	Article	IF	CITATIONS
19	Twin studies in multiple sclerosis: A meta-estimation of heritability and environmentality. Multiple Sclerosis Journal, 2015, 21, 1404-1413.	3.0	43
20	The Contribution of Gut Barrier Changes to Multiple Sclerosis Pathophysiology. Frontiers in Immunology, 2019, 10, 1916.	4.8	39
21	Linkage analysis of multiple sclerosis with candidate region markers in Sardinian and Continental Italian families. European Journal of Human Genetics, 1999, 7, 377-385.	2.8	38
22	Bacterial vaccines for the treatment of multiple sclerosis and other autoimmune diseases. Trends in Immunology, 2000, 21, 503-508.	7.5	33
23	Protein tyrosine phosphatase receptor-type C exon 4 gene mutation distribution in an Italian multiple sclerosis population. Neuroscience Letters, 2002, 328, 325-327.	2.1	33
24	Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?. Frontiers in Immunology, 2021, 12, 755333.	4.8	33
25	Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics. Genome Biology and Evolution, 2016, 8, 3284-3291.	2.5	29
26	DNA damage signatures in peripheral blood cells as biomarkers in prodromal huntington disease. Annals of Neurology, 2019, 85, 296-301.	5.3	28
27	T Cell Response to Amyloid-β and to Mitochondrial Antigens in Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2003, 16, 35-38.	1.5	23
28	Characterization of CD8+ T cell repertoire in identical twins discordant and concordant for multiple sclerosis. Journal of Leukocyte Biology, 2007, 81, 696-710.	3.3	23
29	Multiple sclerosis etiology: beyond genes and environment. Expert Review of Clinical Immunology, 2010, 6, 481-490.	3.0	23
30	<scp>IFN</scp> â€Î² therapy modulates <scp>B</scp> â€cell and monocyte crosstalk via <scp>TLR</scp> 7 in multiple sclerosis patients. European Journal of Immunology, 2013, 43, 1963-1972.	2.9	23
31	Compositional bias and mimicry toward the nonself proteome in immunodominant T cell epitopes of self and nonself antigens. FASEB Journal, 2000, 14, 431-438.	0.5	21
32	Heterozygous <i>KIF1A</i> variants underlie a wide spectrum of neurodevelopmental and neurodegenerative disorders. Journal of Medical Genetics, 2021, 58, 475-483.	3.2	21
33	Quantification of chemical elements in blood of patients affected by multiple sclerosis. Annali Dell'Istituto Superiore Di Sanita, 2005, 41, 213-6.	0.4	20
34	A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis. International Journal of Genomics, 2013, 2013, 1-10.	1.6	19
35	Late-Onset MS: Disease Course and Safety-Efficacy of DMTS. Frontiers in Neurology, 2022, 13, 829331.	2.4	19
36	HSP70-1 promoter region polymorphism tested in three autoimmune diseases. Immunogenetics, 1994, 39, 291-3.	2.4	17

#	Article	IF	CITATIONS
37	A whole genome screen for linkage disequilibrium in multiple sclerosis performed in a continental Italian population. Journal of Neuroimmunology, 2003, 143, 97-100.	2.3	17
38	Concentration of elements in serum of patients affected by multiple sclerosis with first demyelinating episode: a six-month longitudinal follow-up study. Annali Dell'Istituto Superiore Di Sanita, 2005, 41, 217-22.	0.4	16
39	Gene expression profiles reveal homeostatic dynamics during interferon-Î ² therapy in multiple sclerosis. Autoimmunity, 2007, 40, 16-22.	2.6	15
40	T cell response to myelin basic protein before and after treatment with interferon beta in multiple sclerosis. Journal of Neuroimmunology, 1999, 99, 91-96.	2.3	14
41	MAIT Cells and Microbiota in Multiple Sclerosis and Other Autoimmune Diseases. Microorganisms, 2021, 9, 1132.	3.6	14
42	A Case of Double Standard: Sex Differences in Multiple Sclerosis Risk Factors. International Journal of Molecular Sciences, 2021, 22, 3696.	4.1	12
43	Cognitive and behavioral associated changes in manifest Huntington disease: A retrospective crossâ€sectional study. Brain and Behavior, 2021, 11, e02151.	2.2	12
44	Noise in multiple sclerosis: unwanted and necessary. Annals of Clinical and Translational Neurology, 2014, 1, 502-511.	3.7	10
45	Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. Journal of Neuroimmunology, 2018, 324, 165-171.	2.3	10
46	Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia. Clinical Neurology and Neurosurgery, 2018, 168, 60-63.	1.4	9
47	Secondary Prevention in Radiologically Isolated Syndromes and Prodromal Stages of Multiple Sclerosis. Frontiers in Neurology, 2022, 13, 787160.	2.4	9
48	Crossed quadrant homonymous hemianopsia in a case of multiple sclerosis. Clinical Neurology and Neurosurgery, 1995, 97, 324-327.	1.4	8
49	The Italian Twin Project: From the Personal Identification Number to a National Twin Registry. Twin Research and Human Genetics, 2002, 5, 382-386.	1.0	8
50	Global immune disregulation in multiple sclerosis: from the adaptive response to the innate immunity. Journal of Neuroimmunology, 2000, 107, 216-219.	2.3	7
51	Steps towards Collective Sustainability in Biomedical Research. Trends in Molecular Medicine, 2018, 24, 429-432.	6.7	7
52	Autoimmune Encephalitis and CSF Anti-GluR3 Antibodies in an MS Patient after Alemtuzumab Treatment. Brain Sciences, 2019, 9, 299.	2.3	7
53	Genome-Wide Multiple Sclerosis Association Data and Coagulation. Frontiers in Neurology, 2019, 10, 95.	2.4	7
54	Cognitive Reserve in Early Manifest Huntington Disease Patients: Leisure Time Is Associated with Lower Cognitive and Functional Impairment. Journal of Personalized Medicine, 2022, 12, 36.	2.5	7

#	Article	IF	CITATIONS
55	Oxidative Status in Multiple Sclerosis and Off-Targets of Antioxidants: The Case of Edaravone. Current Medicinal Chemistry, 2020, 27, 2095-2105.	2.4	6
56	Riluzole in patients with hereditary cerebellar ataxia – Authors' reply. Lancet Neurology, The, 2016, 15, 789.	10.2	5
57	Drug Holiday of Interferon Beta 1b in Multiple Sclerosis: A Pilot, Randomized, Single Blind Study of Non-inferiority. Frontiers in Neurology, 2019, 10, 695.	2.4	5
58	Intestinal Permeability and Circulating CD161+CCR6+CD8+T Cells in Patients With Relapsing–Remitting Multiple Sclerosis Treated With Dimethylfumarate. Frontiers in Neurology, 2021, 12, 683398.	2.4	5
59	T cell response to N-formylated peptides in humans. European Journal of Immunology, 2001, 31, 2762-2770.	2.9	4
60	Antiviral immune response in patients with multiple sclerosis, healthy siblings and twins. Multiple Sclerosis Journal, 2010, 16, 1527-1528.	3.0	4
61	Reworking GWAS Data to Understand the Role of Nongenetic Factors in MS Etiopathogenesis. Genes, 2020, 11, 97.	2.4	4
62	Multiple sclerosis genetic and non-genetic factors interact through the transient transcriptome. Scientific Reports, 2022, 12, 7536.	3.3	4
63	Dendritic cells loaded with apoptotic oligodendrocytes as a source of myelin T-cell epitopes in multiple sclerosis. Clinical Immunology, 2008, 129, 286-294.	3.2	3
64	Shared environmental effects on multiple sclerosis susceptibility: conflicting evidence from twin studies. Brain, 2014, 137, e287-e287.	7.6	3
65	Subacute multicranial neuropathy revealing an early case of meningeal syphilis. Neurological Sciences, 2015, 36, 1033-1034.	1.9	3
66	Heat shock proteins as targets for ?-? T cells in multiple sclerosis. Annals of Neurology, 1992, 32, 410-410.	5.3	2
67	Dynamics of the autoimmune T-cell repertoire in experimental allergic encephalomyelitis and in multiple sclerosis. Trends in Immunology, 1994, 15, 89-90.	7.5	2
68	Screening for neurotropic viruses in cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. Multiple Sclerosis Journal, 2014, 20, 638-638.	3.0	2
69	The mood–immunity relationship in multiple sclerosis. Experimental Neurology, 2013, 241, 34-37.	4.1	1
70	Effects of the Bacillus Calmette-Guérin (BCG) Vaccine in the Demyelinating Disease of the Central Nervous System. , 2014, , 63-80.		1
71	Effects of Bacille Calmette-GuErin after the first demyelinating event in the CNS. Neurology, 2014, 83, 293-293.	1.1	1
72	Arsenical <i>C</i> â€Glucoside Derivatives with Promising Antitumor Activity. European Journal of Organic Chemistry, 2015, 2015, 4620-4623.	2.4	1

#	Article	IF	CITATIONS
73	Association Between Vaccines and Neuroinflammation. JAMA Neurology, 2015, 72, 605.	9.0	1
74	Validating Nonlinear Registration to Improve Subtraction Images for Lesion Detection and Quantification in Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 70-78.	2.0	1
75	Spinocerebellar Ataxia Type 3 in Italy: Time to Change Mind. Neuroepidemiology, 2016, 46, 268-268.	2.3	0
76	Chemical Elements and Oxidative Status in Neuroinflammation. , 2017, , 67-81.		0
77	Bacille Calmette-Guérin (BCG) Vaccine in Neuroinflammation. , 2018, , 25-38.		0
78	F19â€Cognitive reserve: the leisure time concurs to the cognition performance and to the independence of early huntington disease patients. , 2021, , .		0