
## Guus J M Velders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552995/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 2011, 109, 213-241.                                                                                                                                       | 3.6  | 2,948     |
| 2  | The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.                                                                                                | 3.6  | 539       |
| 3  | The importance of the Montreal Protocol in protecting climate. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4814-4819.                                                                                    | 7.1  | 417       |
| 4  | Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model<br>Development, 2017, 10, 2057-2116.                                                                                                                         | 3.6  | 350       |
| 5  | The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10949-10954.                                                                    | 7.1  | 319       |
| 6  | Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature, 1996, 384, 256-258.                                                                                                                        | 27.8 | 260       |
| 7  | The LOTOS EUROS model: description, validation and latest developments. International Journal of Environment and Pollution, 2008, 32, 270.                                                                                                               | 0.2  | 216       |
| 8  | Health risks. Journal of Photochemistry and Photobiology B: Biology, 1998, 46, 20-39.                                                                                                                                                                    | 3.8  | 176       |
| 9  | Preserving Montreal Protocol Climate Benefits by Limiting HFCs. Science, 2012, 335, 922-923.                                                                                                                                                             | 12.6 | 139       |
| 10 | A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.                                                                           | 10.0 | 126       |
| 11 | Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances<br>regulated under the Montreal and Kyoto Protocols. Journal of Toxicology and Environmental Health<br>- Part B: Critical Reviews, 2016, 19, 289-304. | 6.5  | 116       |
| 12 | Disentangling the effects of CO <sub>2</sub> and short-lived climate forcer mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16325-16330.                                                         | 7.1  | 114       |
| 13 | Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions. Atmospheric Environment, 2015, 123, 200-209.                                                                                 | 4.1  | 105       |
| 14 | The role of HFCs in mitigating 21st century climate change. Atmospheric Chemistry and Physics, 2013, 13, 6083-6089.                                                                                                                                      | 4.9  | 94        |
| 15 | Quantifying contributions of chlorofluorocarbon banks to emissions and impacts on the ozone layer and climate. Nature Communications, 2020, 11, 1380.                                                                                                    | 12.8 | 72        |
| 16 | Higher than expected NOx emission from trucks may affect attainability of NO2 limit values in the Netherlands. Atmospheric Environment, 2011, 45, 3025-3033.                                                                                             | 4.1  | 66        |
| 17 | Data assimilation of ground-level ozone in Europe with a Kalman filter and chemistry transport<br>model. Journal of Geophysical Research, 2004, 109, .                                                                                                   | 3.3  | 63        |
| 18 | Advances in air quality research – current and emerging challenges. Atmospheric Chemistry and Physics, 2022, 22, 4615-4703.                                                                                                                              | 4.9  | 63        |

Guus J M Velders

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Changes in Emissions of Ozone-Depleting Substances from China Due to Implementation of the<br>Montreal Protocol. Environmental Science & Technology, 2018, 52, 11359-11366.                                          | 10.0 | 54        |
| 20 | Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?. Environmental Science and Policy, 2014, 44, 149-163.                                                    | 4.9  | 50        |
| 21 | Uncertainty analysis of projections of ozone-depleting substances: mixing ratios, EESC, ODPs, and GWPs. Atmospheric Chemistry and Physics, 2014, 14, 2757-2776.                                                      | 4.9  | 44        |
| 22 | Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005–2013 and Projections to 2050.<br>Environmental Science & Technology, 2016, 50, 2027-2034.                                                          | 10.0 | 42        |
| 23 | Ammonia concentrations in the Netherlands: spatially detailed measurements and model calculations.<br>Atmospheric Environment, 2004, 38, 4045-4055.                                                                  | 4.1  | 35        |
| 24 | Oceanic bromoform emissions weighted by their ozone depletion potential. Atmospheric Chemistry and Physics, 2015, 15, 13647-13663.                                                                                   | 4.9  | 34        |
| 25 | External drift kriging of NOx concentrations with dispersion model output in a reduced air quality monitoring network. Environmental and Ecological Statistics, 2009, 16, 321-339.                                   | 3.5  | 32        |
| 26 | Spatial- and Time-Explicit Human Damage Modeling of Ozone Depleting Substances in Life Cycle Impact<br>Assessment. Environmental Science & Technology, 2010, 44, 204-209.                                            | 10.0 | 32        |
| 27 | A review of bottom-up and top-down emission estimates of hydrofluorocarbons (HFCs) in different parts of the world. Chemosphere, 2021, 283, 131208.                                                                  | 8.2  | 32        |
| 28 | Ozone depletion and skin cancer incidence: a source risk approach. Journal of Hazardous Materials,<br>1998, 61, 77-84.                                                                                               | 12.4 | 30        |
| 29 | Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies. Atmospheric Chemistry and Physics, 2022, 22, 6087-6101.        | 4.9  | 29        |
| 30 | Options to accelerate ozone recovery: ozone and climate benefits. Atmospheric Chemistry and Physics, 2010, 10, 7697-7707.                                                                                            | 4.9  | 27        |
| 31 | Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for<br>CH <sub>3</sub> CCl <sub>3</sub> Alternatives. Journal of Geophysical Research D: Atmospheres, 2017,<br>122, 11,914.   | 3.3  | 26        |
| 32 | Uncertainty assessment of local NO2 concentrations derived from error-in-variable external drift<br>kriging and its relationship to the 2010 air quality standard. Atmospheric Environment, 2006, 40,<br>2583-2595.  | 4.1  | 25        |
| 33 | Electron density analysis of nonlinear optical materials: an ab initio study of different<br>conformations of benzene derivatives. The Journal of Physical Chemistry, 1991, 95, 8601-8608.                           | 2.9  | 24        |
| 34 | Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU<br>National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmospheric Environment, 2013, 75,<br>129-140. | 4.1  | 24        |
| 35 | Effect of electron correlation on the electron density distribution and (hyper)polarizability of molecules. The Journal of Physical Chemistry, 1992, 96, 10725-10735.                                                | 2.9  | 23        |
| 36 | Growth of climate change commitments from HFC banks and emissions. Atmospheric Chemistry and Physics, 2014, 14, 4563-4572.                                                                                           | 4.9  | 22        |

Guus J M Velders

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The simulation of the transport of aircraft emissions by a three-dimensional global model. Annales<br>Geophysicae, 1994, 12, 385-393.                                                                    | 1.6 | 21        |
| 38 | Likelihood of meeting the EU limit values for NO2 and PM10 concentrations in the Netherlands.<br>Atmospheric Environment, 2009, 43, 3060-3069.                                                           | 4.1 | 21        |
| 39 | Improvements in air quality in the Netherlands during the corona lockdown based on observations and model simulations. Atmospheric Environment, 2021, 247, 118158.                                       | 4.1 | 20        |
| 40 | Effects of European emission reductions on air quality in the Netherlands and the associated health effects. Atmospheric Environment, 2020, 221, 117109.                                                 | 4.1 | 19        |
| 41 | Meteorological variability in NO2 and PM10 concentrations in the Netherlands and its relation with EU limit values. Atmospheric Environment, 2009, 43, 3858-3866.                                        | 4.1 | 16        |
| 42 | A Hybrid Kalman Filter Algorithm for Large-Scale Atmospheric Chemistry Data Assimilation. Monthly<br>Weather Review, 2007, 135, 140-151.                                                                 | 1.4 | 15        |
| 43 | Recent decreases in observed atmospheric concentrations of SO2 in the Netherlands in line with emission reductions. Atmospheric Environment, 2011, 45, 5647-5651.                                        | 4.1 | 13        |
| 44 | Structure and electron density distribution of the nitrate ion and urea molecule upon protonation.<br>Theoretica Chimica Acta, 1992, 84, 195-215.                                                        | 0.8 | 12        |
| 45 | Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East.<br>Atmospheric Chemistry and Physics, 2021, 21, 14833-14849.                                          | 4.9 | 12        |
| 46 | Comparison of the Hartree-Fock, M�ller-Plesset, and Hartree-Fock-Slater method with respect to electrostatic properties of small molecules. Theoretica Chimica Acta, 1993, 86, 391-416.                  | 0.8 | 10        |
| 47 | High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling. Atmospheric Environment, 2017, 155, 140-153.                                       | 4.1 | 7         |
| 48 | Calculation of the electron density distribution in silicon by the density-functional method.<br>Comparison with X-ray results. Acta Crystallographica Section B: Structural Science, 1989, 45, 359-364. | 1.8 | 5         |
| 49 | The Precautionary Principle and the Environment: A Case Study of an Immediate Global Response to the Molina and Rowland Warning. ACS Earth and Space Chemistry, 2021, 5, 3036-3044.                      | 2.7 | 3         |
| 50 | Model-based geostatistical interpolation of the annual number of ozone exceedance days in the<br>Netherlands. Stochastic Environmental Research and Risk Assessment, 2005, 19, 173-183.                  | 4.0 | 1         |
| 51 | Greenhouse gases: Interrelationship with stratospheric ozone depletion. Studies in Environmental<br>Science, 1998, , 223-239.                                                                            | 0.0 | 0         |
| 52 | Modelling Air Quality and Deposition at High Resolution in the Netherlands with Plume and Grid<br>Models. Springer Proceedings in Complexity, 2018, , 245-248.                                           | 0.3 | 0         |