
Alejandro Cadranel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5552864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noncovalent Liquid Phase Functionalization of 2H-WS ₂ with PDI: An Energy Conversion Platform with Long-Lived Charge Separation. Journal of the American Chemical Society, 2022, 144, 5834-5840.	13.7	8
2	Intense Photoinduced Intervalence Charge Transfer in Highâ€Valent Iron Mixed Phenolate/Carbene Complexes. Chemistry - A European Journal, 2022, 28, .	3.3	6
3	A photoinduced mixed valence photoswitch. Physical Chemistry Chemical Physics, 2022, 24, 15121-15128.	2.8	8
4	Photon―and Chargeâ€Management in Advanced Energy Materials: Combining 0D, 1D, and 2D Nanocarbons as well as Bulk Semiconductors with Organic Chromophores. Advanced Energy Materials, 2021, 11, 2002831.	19.5	12
5	Bifurcation of excited state trajectories toward energy transfer or electron transfer directed by wave function symmetry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
6	Optical processes in carbon nanocolloids. CheM, 2021, 7, 606-628.	11.7	73
7	Ligand field states dominate excited state decay in trans-[Ru(py)4Cl2] MLCT chromophores. Inorganica Chimica Acta, 2021, 518, 120246.	2.4	6
8	Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light. Journal of the American Chemical Society, 2021, 143, 15661-15673.	13.7	62
9	Mechanistic investigation of a visible light mediated dehalogenation/cyclisation reaction using iron(<scp>iii</scp>), iridium(<scp>iii</scp>) and ruthenium(<scp>ii</scp>) photosensitizers. Catalysis Science and Technology, 2021, 11, 8037-8051.	4.1	18
10	Carbon Nanodots for All-in-One Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2021, 143, 20122-20132.	13.7	41
11	Pingpongâ€Energietransfer in kovalent verknüpften Porphyrinâ€MoS 2 â€Architekturen. Angewandte Chemie, 2020, 132, 4004-4009.	2.0	7
12	Pingâ€Pong Energy Transfer in Covalently Linked Porphyrinâ€MoS ₂ Architectures. Angewandte Chemie - International Edition, 2020, 59, 3976-3981.	13.8	31
13	Assessing the Photoinduced Electron-Donating Behavior of Carbon Nanodots in Nanoconjugates. Journal of the American Chemical Society, 2020, 142, 20324-20328.	13.7	20
14	Time-Resolved Exploration of a photoCORM {Ru(bpy)} Model Compound. Inorganic Chemistry, 2020, 59, 12075-12085.	4.0	3
15	Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Materials Chemistry Frontiers, 2020, 4, 3640-3648.	5.9	15
16	Wave-Function Symmetry Control of Electron-Transfer Pathways within a Charge-Transfer Chromophore. Journal of Physical Chemistry Letters, 2020, 11, 8399-8405.	4.6	5
17	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie - International Edition, 2020, 59, 12779-12784.	13.8	28
18	Symmetryâ€Breaking Chargeâ€Transfer Chromophore Interactions Supported by Carbon Nanodots. Angewandte Chemie, 2020, 132, 12879-12884.	2.0	4

ALEJANDRO CADRANEL

#	Article	IF	CITATIONS
19	A Hole Delocalization Strategy: Photoinduced Mixed-Valence MLCT States Featuring Extended Lifetimes. Inorganic Chemistry, 2019, 58, 10898-10904.	4.0	13
20	Inversion of donor–acceptor roles in photoinduced intervalence charge transfers. Chemical Communications, 2019, 55, 7659-7662.	4.1	18
21	Carbon Nanodots for Charge-Transfer Processes. Accounts of Chemical Research, 2019, 52, 955-963.	15.6	74
22	Coexistence of MLCT Excited States of Different Symmetry upon Photoexcitation of a Single Molecular Species. Journal of Physical Chemistry C, 2019, 123, 3285-3291.	3.1	12
23	Electronic Energy Transduction from {Ru(py) ₄ } Chromophores to Cr(III) Luminophores. Inorganic Chemistry, 2018, 57, 3042-3053.	4.0	16
24	Screening Supramolecular Interactions between Carbon Nanodots and Porphyrins. Journal of the American Chemical Society, 2018, 140, 904-907.	13.7	59
25	Exploring Tetrathiafulvalene–Carbon Nanodot Conjugates in Charge Transfer Reactions. Angewandte Chemie - International Edition, 2018, 57, 1001-1005.	13.8	41
26	Exploring Tetrathiafulvalene–Carbon Nanodot Conjugates in Charge Transfer Reactions. Angewandte Chemie, 2018, 130, 1013-1017.	2.0	7
27	Fine-tuning the assemblies of carbon nanodots and porphyrins. Chemical Communications, 2018, 54, 11642-11644.	4.1	18
28	Distant ultrafast energy transfer in a trimetallic {Ru–Ru–Cr} complex facilitated by hole delocalization. Physical Chemistry Chemical Physics, 2017, 19, 2882-2893.	2.8	15
29	Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots. RSC Advances, 2017, 7, 24771-24780.	3.6	101
30	Exploring the localized to delocalized transition in non-symmetric bimetallic ruthenium polypyridines. Dalton Transactions, 2017, 46, 15757-15768.	3.3	18
31	Trapping intermediate MLCT states in low-symmetry {Ru(bpy)} complexes. Chemical Science, 2017, 8, 7434-7442.	7.4	8
32	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie - International Edition, 2017, 56, 12097-12101.	13.8	58
33	Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction. Angewandte Chemie, 2017, 129, 12265-12269.	2.0	16
34	Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion. Journal of Physical Chemistry C, 2017, 121, 16607-16616.	3.1	28
35	Spectroscopic signatures of ligand field states in {Ru ^{II} (imine)} complexes. Dalton Transactions, 2016, 45, 5464-5475.	3.3	27
	Four chromophores in one building block: synthesis, structure and characterization of		

36 <i>trans</i>-[Ru(MQ)₄Cl₂]⁴⁺ and <i>trans</i>-[Ru(4,4'-bpy)₄Cl₂] (MQ⁺Â=ÂN-methyl-4,4'-bipyridinium;) Tj ETQq0000 rgBT

ALEJANDRO CADRANEL

#	Article	IF	CITATIONS
37	Influence of the Electronic Configuration in the Properties of d ⁶ –d ⁵ Mixed-Valence Complexes. Inorganic Chemistry, 2014, 53, 8221-8229.	4.0	25
38	Emissive cyanide-bridged bimetallic compounds as building blocks for polymeric antennae. Dalton Transactions, 2013, 42, 16723.	3.3	14
39	Efficient energy transfer via the cyanide bridge in dinuclear complexes containing Ru(ii) polypyridine moieties. Dalton Transactions, 2012, 41, 5343.	3.3	26
40	Where's the Spin? A DFT Study of Mixed-Valence Cyanide-Bridged Ruthenium Polypyridines. Journal of the Brazilian Chemical Society, 0, , .	0.6	2