Semyon Dyatlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole. Communications in Mathematical Physics, 2011, 306, 119-163.	2.2	72
2	Asymptotic Distribution of Quasi-Normal Modes for Kerr–de Sitter Black Holes. Annales Henri Poincare, 2012, 13, 1101-1166.	1.7	65
3	Dynamical zeta functions for Anosov flows via microlocal analysis. Annales Scientifiques De L'Ecole Normale Superieure, 2016, 49, 543-577.	0.8	59
4	Asymptotics of Linear Waves and Resonances with Applications to Black Holes. Communications in Mathematical Physics, 2015, 335, 1445-1485.	2.2	44
5	Exponential Energy Decay for Kerr–de Sitter Black Holes Beyond Event Horizons. Mathematical Research Letters, 2011, 18, 1023-1035.	0.5	41
6	Spectral gaps, additive energy, and a fractal uncertainty principle. Geometric and Functional Analysis, 2016, 26, 1011-1094.	1.8	38
7	Pollicott–Ruelle Resonances for Open Systems. Annales Henri Poincare, 2016, 17, 3089-3146.	1.7	38
8	Power spectrum of the geodesic flow on hyperbolic manifolds. Analysis and PDE, 2015, 8, 923-1000.	1.4	31
9	Spectral gaps without the pressure condition. Annals of Mathematics, 2018, 187, .	4.2	30
10	Fourier dimension and spectral gaps for hyperbolic surfaces. Geometric and Functional Analysis, 2017, 27, 744-771.	1.8	29
11	Weighted Eigenfunction Estimates with Applications to Compressed Sensing. SIAM Journal on Mathematical Analysis, 2012, 44, 3481-3501.	1.9	26
12	Microlocal limits of plane waves and Eisenstein functions. Annales Scientifiques De L'Ecole Normale Superieure, 2014, 47, 371-448.	0.8	26
13	Fractal Weyl laws for asymptotically hyperbolic manifolds. Geometric and Functional Analysis, 2013, 23, 1145-1206.	1.8	25
14	Resonance projectors and asymptotics for ?-normally hyperbolic trapped sets. Journal of the American Mathematical Society, 2015, 28, 311-381.	3.9	25
15	Ruelle zeta function at zero for surfaces. Inventiones Mathematicae, 2017, 210, 211-229.	2.5	24
16	Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity, 2013, 26, 35-52.	1.4	23
17	Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity, 2015, 28, 3511-3533.	1.4	22
18	Spectral gaps for normally hyperbolic trapping. Annales De L'Institut Fourier, 2016, 66, 55-82.	0.6	21

2

SEMYON DYATLOV

#	Article	IF	CITATIONS
19	Semiclassical measures on hyperbolic surfaces have full support. Acta Mathematica, 2018, 220, 297-339.	3.9	20
20	Microlocal analysis of forced waves. Pure and Applied Analysis, 2019, 1, 359-384.	1.1	16
21	Resonances and lower resolvent bounds. Journal of Spectral Theory, 2015, 5, 599-615.	0.8	15
22	Resonances for Open Quantum Maps and a Fractal Uncertainty Principle. Communications in Mathematical Physics, 2017, 354, 269-316.	2.2	14
23	An introduction to fractal uncertainty principle. Journal of Mathematical Physics, 2019, 60, .	1.1	13
24	Sharp polynomial bounds on the number of Pollicott–Ruelle resonances. Ergodic Theory and Dynamical Systems, 2014, 34, 1168-1183.	0.6	12
25	Dolgopyat's method and the fractal uncertainty principle. Analysis and PDE, 2018, 11, 1457-1485.	1.4	10
26	Scattering Phase Asymptotics with Fractal Remainders. Communications in Mathematical Physics, 2013, 324, 425-444.	2.2	7
27	Afterword: Dynamical zeta functions for Axiom A flows. Bulletin of the American Mathematical Society, 2018, 55, 337-342.	1.5	7
28	Microlocal limits of Eisenstein functions away from the unitarity axis. Journal of Spectral Theory, 2012, 2, 181-202.	0.8	5
29	Control of eigenfunctions on surfaces of variable curvature. Journal of the American Mathematical Society, 2022, 35, 361-465.	3.9	5
30	Fractal Uncertainty for Transfer Operators. International Mathematics Research Notices, 2020, 2020, 781-812.	1.0	3
31	Symmetry of bound and antibound states in the semiclassical limit for a general class of potentials. Proceedings of the American Mathematical Society, 2010, 138, 3203-3203.	0.8	3
32	Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle. Journées Équations Aux Dérivées Partielles, 2017, , 1-14.	0.2	3
33	Fractal Weyl laws and wave decay for general trapping. Nonlinearity, 2017, 30, 4301-4343.	1.4	2
34	The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds. Inventiones Mathematicae, 2022, 229, 303-394.	2.5	2
35	Lower Resolvent Bounds and Lyapunov Exponents. Applied Mathematics Research EXpress, 2016, 2016, 68-97.	1.0	1
36	Around quantum ergodicity. Annales Mathematiques Du Quebec, 2022, 46, 11-26.	0.2	1

#	Article	IF	CITATIONS
37	Improved fractal Weyl bounds for hyperbolic manifolds (with an appendix by David Borthwick, Semyon) Tj ETQq1	1 _{.0,} 78431	4 rgBT /Ove
38	Introduction to the Special Issue: In memory of Jean Bourgain. Journal of Mathematical Physics, 2022, 63, 050401.	1.1	0