Hai-Tao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551366/publications.pdf

Version: 2024-02-01

218677 302126 4,710 44 26 39 citations h-index g-index papers 51 51 51 4441 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A critical regulatory role for the cytoplasmic domain of CD28 in ligand binding in naive T cells. Science Bulletin, 2021, 66, 107-110.	9.0	O
2	Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophysical Journal, 2021, 120, 1692-1704.	0.5	17
3	Application of Spot Variation FCS (svFCS) Analysis to T Cell Membrane Dynamics. Biophysical Journal, 2020, 118, 353a.	0.5	O
4	Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation. Scientific Reports, 2018, 8, 4966.	3.3	27
5	TCR and CD28 Concomitant Stimulation Elicits a Distinctive Calcium Response in Naive T Cells. Frontiers in Immunology, 2018, 9, 2864.	4.8	27
6	A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy. Methods in Cell Biology, 2017, 139, 1-22.	1.1	11
7	Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016, 166, 920-934.	28.9	110
8	Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor. Annals of Biomedical Engineering, 2016, 44, 3510-3521.	2.5	14
9	Probing the Plasma Membrane Organization in Living Cells by Spot Variation Fluorescence Correlation Spectroscopy. Methods in Enzymology, 2013, 519, 277-302.	1.0	28
10	Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS). PLoS Computational Biology, 2013, 9, e1003245.	3.2	36
11	Deciphering Cell Membrane Organization Based on Lateral Diffusion Measurements by Fluorescence Correlation Spectroscopy at Different Length Scales. Springer Series on Fluorescence, 2012, , 271-289.	0.8	0
12	Membrane dynamics shape TCR-generated signaling. Frontiers in Immunology, 2012, 3, 90.	4.8	29
13	Probing Orientational Order of MHC Class I Protein and Lipids in Cell Membranes by Fluorescence Polarization-Resolved Microscopy Imaging. Biophysical Journal, 2011, 100, 616a.	0.5	O
14	Probing Orientational Behavior of MHC Class I Protein and Lipid Probes in Cell Membranes by Fluorescence Polarization-Resolved Imaging. Biophysical Journal, 2011, 101, 468-476.	0.5	25
15	Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy. Annual Review of Physical Chemistry, 2011, 62, 417-436.	10.8	131
16	A FRET-Based Biosensor for Imaging SYK Activities in Living Cells. Cellular and Molecular Bioengineering, 2011, 4, 670-677.	2.1	15
17	T•ell antigen receptor triggering and lipid rafts: a matter of space and time scales. EMBO Reports, 2008, 9, 525-530.	4.5	49
18	Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature Chemical Biology, 2008, 4, 538-547.	8.0	270

#	Article	IF	CITATIONS
19	Nanoscale Membrane Organization and Receptor Signaling in T- Lymphocytes. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 358-365.	0.5	0
20	Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling. PLoS ONE, 2008, 3, e3467.	2.5	66
21	Palmitoylation is required for efficient Fas cell death signaling. EMBO Journal, 2007, 26, 209-220.	7.8	167
22	Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cellular Microbiology, 2006, 8, 197-206.	2.1	39
23	Dynamics in the plasma membrane: how to combine fluidity and order. EMBO Journal, 2006, 25, 3446-3457.	7.8	259
24	Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO Journal, 2006, 25, 3245-3256.	7.8	443
25	Lipid rafts and the initiation of T cell receptor signaling. Seminars in Immunology, 2005, 17, 23-33.	5. 6	84
26	Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation. International Immunology, 2004, 16, 231-240.	4.0	56
27	Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. Journal of Cell Science, 2004, 117, 1009-1016.	2.0	114
28	Induction of T Helper Type 2 Immunity by a Point Mutation in the LAT Adaptor. Science, 2002, 296, 2036-2040.	12.6	263
29	Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nature Immunology, 2002, 3, 159-168.	14.5	142
30	An essential role for membrane rafts in the initiation of Fas/CD95â€triggered cell death in mouse thymocytes. EMBO Reports, 2002, 3, 190-196.	4.5	210
31	TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO Journal, 2002, 21, 1899-1908.	7.8	294
32	Membrane rafts and signaling by the multichain immune recognition receptors. Current Opinion in Immunology, 2000, 12, 250-255.	5.5	224
33	Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. Trends in Immunology, 2000, 21, 2-7.	7.5	119
34	Crippling of CD3-ζ ITAMs Does Not Impair T Cell Receptor Signaling. Immunity, 1999, 10, 409-420.	14.3	93
35	Radeaux lipidiques : rÃ1e dans l'activation lymphocytaire Medecine/Sciences, 1999, 15, 1142.	0.2	1
36	Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO Journal, 1998, 17, 5334-5348.	7.8	583

#	Article	IF	CITATIONS
37	Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope. Biophysical Journal, 1997, 73, 1627-1632.	0.5	13
38	Thymocytes in Thy- $1\hat{a}$ ° $/\hat{a}$ ° mice show augmented TCR signaling and impaired differentiation. Current Biology, 1997, 7, 705-708.	3.9	213
39	Thy-1 triggers mouse thymocyte apoptosis through a bcl-2-resistant mechanism Journal of Experimental Medicine, 1994, 179, 785-796.	8.5	73
40	Quantitating Apoptosis by a Nonradioactive DNA Dot Blot Assay. Analytical Biochemistry, 1994, 221, 431-433.	2.4	6
41	Thy-1 supports adhesion of mouse thymocytes to thymic epithelial cells through a Ca2(+)-independent mechanism Journal of Experimental Medicine, 1991, 173, 515-518.	8.5	81
42	Biochemical properties of somatostatin receptors. Metabolism: Clinical and Experimental, 1990, 39, 70-73.	3.4	7
43	Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule Journal of Cell Biology, 1987, 105, 2489-2500.	5.2	154
44	Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule EMBO Journal, 1986, 5, 2489-2494.	7.8	215