Наі-Тао Не

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551366/publications.pdf Version: 2024-02-01

Ηλι-ΤΛΟ ΗΓ

#	Article	IF	CITATIONS
1	Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO Journal, 1998, 17, 5334-5348.	7.8	583
2	Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO Journal, 2006, 25, 3245-3256.	7.8	443
3	TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO Journal, 2002, 21, 1899-1908.	7.8	294
4	Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature Chemical Biology, 2008, 4, 538-547.	8.0	270
5	Induction of T Helper Type 2 Immunity by a Point Mutation in the LAT Adaptor. Science, 2002, 296, 2036-2040.	12.6	263
6	Dynamics in the plasma membrane: how to combine fluidity and order. EMBO Journal, 2006, 25, 3446-3457.	7.8	259
7	Membrane rafts and signaling by the multichain immune recognition receptors. Current Opinion in Immunology, 2000, 12, 250-255.	5.5	224
8	Phosphatidylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule EMBO Journal, 1986, 5, 2489-2494.	7.8	215
9	Thymocytes in Thy-1â^'/â^' mice show augmented TCR signaling and impaired differentiation. Current Biology, 1997, 7, 705-708.	3.9	213
10	An essential role for membrane rafts in the initiation of Fas/CD95â€ŧriggered cell death in mouse thymocytes. EMBO Reports, 2002, 3, 190-196.	4.5	210
11	Palmitoylation is required for efficient Fas cell death signaling. EMBO Journal, 2007, 26, 209-220.	7.8	167
12	Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule Journal of Cell Biology, 1987, 105, 2489-2500.	5.2	154
13	Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nature Immunology, 2002, 3, 159-168.	14.5	142
14	Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy. Annual Review of Physical Chemistry, 2011, 62, 417-436.	10.8	131
15	Microdomains in lymphocyte signalling: beyond GPI-anchored proteins. Trends in Immunology, 2000, 21, 2-7.	7.5	119
16	Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. Journal of Cell Science, 2004, 117, 1009-1016.	2.0	114
17	Glycosylation-Dependent IFN-γR Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016, 166, 920-934.	28.9	110
18	Crippling of CD3-ζ ITAMs Does Not Impair T Cell Receptor Signaling. Immunity, 1999, 10, 409-420.	14.3	93

ΗΑΙ-ΤΑΟ ΗΕ

#	Article	IF	CITATIONS
19	Lipid rafts and the initiation of T cell receptor signaling. Seminars in Immunology, 2005, 17, 23-33.	5.6	84
20	Thy-1 supports adhesion of mouse thymocytes to thymic epithelial cells through a Ca2(+)-independent mechanism Journal of Experimental Medicine, 1991, 173, 515-518.	8.5	81
21	Thy-1 triggers mouse thymocyte apoptosis through a bcl-2-resistant mechanism Journal of Experimental Medicine, 1994, 179, 785-796.	8.5	73
22	Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling. PLoS ONE, 2008, 3, e3467.	2.5	66
23	Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation. International Immunology, 2004, 16, 231-240.	4.0	56
24	T ell antigen receptor triggering and lipid rafts: a matter of space and time scales. EMBO Reports, 2008, 9, 525-530.	4.5	49
25	Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cellular Microbiology, 2006, 8, 197-206.	2.1	39
26	Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS). PLoS Computational Biology, 2013, 9, e1003245.	3.2	36
27	Membrane dynamics shape TCR-generated signaling. Frontiers in Immunology, 2012, 3, 90.	4.8	29
28	Probing the Plasma Membrane Organization in Living Cells by Spot Variation Fluorescence Correlation Spectroscopy. Methods in Enzymology, 2013, 519, 277-302.	1.0	28
29	Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation. Scientific Reports, 2018, 8, 4966.	3.3	27
30	TCR and CD28 Concomitant Stimulation Elicits a Distinctive Calcium Response in Naive T Cells. Frontiers in Immunology, 2018, 9, 2864.	4.8	27
31	Probing Orientational Behavior of MHC Class I Protein and Lipid Probes in Cell Membranes by Fluorescence Polarization-Resolved Imaging. Biophysical Journal, 2011, 101, 468-476.	0.5	25
32	Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophysical Journal, 2021, 120, 1692-1704.	0.5	17
33	A FRET-Based Biosensor for Imaging SYK Activities in Living Cells. Cellular and Molecular Bioengineering, 2011, 4, 670-677.	2.1	15
34	Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor. Annals of Biomedical Engineering, 2016, 44, 3510-3521.	2.5	14
35	Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope. Biophysical Journal, 1997, 73, 1627-1632.	0.5	13
36	A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy. Methods in Cell Biology, 2017, 139, 1-22.	1.1	11

ΗΑΙ-ΤΑΟ ΗΕ

#	Article	IF	CITATIONS
37	Biochemical properties of somatostatin receptors. Metabolism: Clinical and Experimental, 1990, 39, 70-73.	3.4	7
38	Quantitating Apoptosis by a Nonradioactive DNA Dot Blot Assay. Analytical Biochemistry, 1994, 221, 431-433.	2.4	6
39	Radeaux lipidiques : rÃ1e dans l'activation lymphocytaire Medecine/Sciences, 1999, 15, 1142.	0.2	1
40	Nanoscale Membrane Organization and Receptor Signaling in T- Lymphocytes. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 358-365.	0.5	0
41	Probing Orientational Order of MHC Class I Protein and Lipids in Cell Membranes by Fluorescence Polarization-Resolved Microscopy Imaging. Biophysical Journal, 2011, 100, 616a.	0.5	0
42	Deciphering Cell Membrane Organization Based on Lateral Diffusion Measurements by Fluorescence Correlation Spectroscopy at Different Length Scales. Springer Series on Fluorescence, 2012, , 271-289.	0.8	0
43	Application of Spot Variation FCS (svFCS) Analysis to T Cell Membrane Dynamics. Biophysical Journal, 2020, 118, 353a.	0.5	0
44	A critical regulatory role for the cytoplasmic domain of CD28 in ligand binding in naive T cells. Science Bulletin, 2021, 66, 107-110.	9.0	0