
Toshihiko Kiwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5551322/publications.pdf Version: 2024-02-01

TOSHIHIKO KIWA

#	Article	IF	CITATIONS
1	Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Optics Letters, 2003, 28, 2058.	3.3	177
2	lmaging of large-scale integrated circuits using laser-terahertz emission microscopy. Optics Express, 2005, 13, 115.	3.4	130
3	Chemical sensing plate with a laser-terahertz monitoring system. Applied Optics, 2008, 47, 3324.	2.1	63
4	Small Eddy Current Testing Sensor Probe Using a Tunneling Magnetoresistance Sensor to Detect Cracks in Steel Structures. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	50
5	A Terahertz Chemical Microscope to Visualize Chemical Concentrations in Microfluidic Chips. Japanese Journal of Applied Physics, 2007, 46, L1052.	1.5	49
6	Detection of Inner Cracks in Thick Steel Plates Using Unsaturated AC Magnetic Flux Leakage Testing With a Magnetic Resistance Gradiometer. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	46
7	Detection of Inner Corrosion of Steel Construction Using Magnetic Resistance Sensor and Magnetic Spectroscopy Analysis. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	45
8	A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds. NDT and E International, 2011, 44, 101-105.	3.7	44
9	Terahertz chemical microscope for label-free detection of protein complex. Applied Physics Letters, 2010, 96, 211114.	3.3	36
10	Resonant terahertz radiation from Tl2Ba2CaCu2O8+δ thin films by ultrafast optical pulse excitation. Applied Physics Letters, 2002, 80, 3147-3149.	3.3	34
11	Detection of back-side pit on a ferrous plate by magnetic flux leakage method with analyzing magnetic field vector. NDT and E International, 2010, 43, 323-328.	3.7	34
12	High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sensors and Actuators B: Chemical, 2019, 287, 595-601.	7.8	32
13	Fourier-transformed eddy current technique to visualize cross-sections of conductive materials. NDT and E International, 2007, 40, 363-367.	3.7	29
14	Laser terahertz emission system to investigate hydrogen gas sensors. Applied Physics Letters, 2005, 86, 261102.	3.3	28
15	Laser Terahertz Emission Microscope. Proceedings of the IEEE, 2007, 95, 1646-1657.	21.3	28
16	Magnetic property mapping system for analyzing three-dimensional magnetic components. Review of Scientific Instruments, 2006, 77, 063703.	1.3	26
17	Time-Domain Terahertz Spectroscopy of (100) (LaAlO3)0.3-(Sr2AlTaO6)0.7 Substrate. Japanese Journal of Applied Physics, 2001, 40, L38-L40.	1.5	25
18	Dual-Gate Field-Effect Transistor Hydrogen Gas Sensor with Thermal Compensation. Japanese Journal of Applied Physics, 2010, 49, 024206.	1.5	24

#	Article	IF	CITATIONS
19	One-Minute Joule Annealing Enhances the Thermoelectric Properties of Carbon Nanotube Yarns via the Interface. ACS Applied Energy Materials, 2019, 2, 7700-7708.	5.1	24
20	Work function shifts of catalytic metals under hydrogen gas visualized by terahertz chemical microscopy. Optics Express, 2012, 20, 11637.	3.4	23
21	Magnetic Nondestructive Test for Resistance Spot Welds Using Magnetic Flux Penetration and Eddy Current Methods. Journal of Nondestructive Evaluation, 2013, 32, 286-293.	2.4	22
22	Label free immune assay using terahertz chemical microscope. Sensors and Actuators B: Chemical, 2013, 187, 8-11.	7.8	22
23	Magnetic Measurement of Moisture Content of Grain. IEEE Transactions on Magnetics, 2007, 43, 2683-2685.	2.1	21
24	Highly Sensitive Measurement of Moisture Content Using HTS-SQUID. IEEE Transactions on Applied Superconductivity, 2009, 19, 878-881.	1.7	20
25	Difference in the detection limits of flaws in the depths of multi-layered and continuous aluminum plates using low-frequency eddy current testing. NDT and E International, 2008, 41, 108-111.	3.7	19
26	Tetrahertz Pulse Radiation Properties of a Bi2Sr2CaCu2O8+Î'Bowtie Antenna by Optical Pulse Illumination. Japanese Journal of Applied Physics, 2002, 41, 1992-1997.	1.5	18
27	Development of a Compact Moving-Sample Magnetometer Using High-T _c Superconducting Quantum Interference Device. Japanese Journal of Applied Physics, 2012, 51, 046601.	1.5	18
28	Magnetic thickness gauge using a Fourier transformed eddy current technique. NDT and E International, 2009, 42, 606-609.	3.7	17
29	pH measurements in 16-nL-volume solutions using terahertz chemical microscopy. Optics Express, 2018, 26, 8232.	3.4	17
30	Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-Tc SQUID magnetometer. Journal of Magnetism and Magnetic Materials, 2015, 394, 260-265.	2.3	16
31	Liquid-like dielectric response is an origin of long polaron lifetime exceeding 10 μs in lead bromide perovskites. Journal of Chemical Physics, 2020, 152, 084704.	3.0	14
32	Imaging of Defect Signal of Reinforcing Steel Bar at High Lift-Off Using a Magnetic Sensor Array by Unsaturated AC Magnetic Flux Leakage Testing. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	14
33	Detection of the weak magnetic properties change of stainless-steel welding parts by low frequency magnetic imaging. Journal of Applied Physics, 2008, 103, .	2.5	13
34	Optimization of the Detection Technique for a Vibrating-Sample Magnetometer Using High- \$T_{m c}\$ SQUID. IEEE Transactions on Applied Superconductivity, 2013, 23, 1600204-1600204.	1.7	13
35	Using Magnetic Field Gradients to Shorten the Antigen-Antibody Reaction Time for a Magnetic Immunoassay. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	13
36	Ultrathin-film hydrogen gas sensor with nanostructurally modified surface. Japanese Journal of Applied Physics, 2014, 53, 076701.	1.5	12

Τοςηιμικό Κιwa

#	Article	IF	CITATIONS
37	Multi-ion sensing of buffer solutions using terahertz chemical microscopy. Applied Physics Express, 2014, 7, 122401.	2.4	12
38	Automatic Scanning System for Back-Side Defect of Steel Structure Using Magnetic Flux Leakage Method. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	12
39	Optimization of an AC/DC High- <inline-formula> <tex-math notation="TeX">\$T_{m c}\$</tex-math></inline-formula> SQUID Magnetometer Detection Unit for Evaluation of Magnetic Nanoparticles in Solution. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	12
40	Imaging of Chemical Reactions Using a Terahertz Chemical Microscope. Photonics, 2019, 6, 10.	2.0	12
41	High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy. Physica C: Superconductivity and Its Applications, 2001, 362, 314-318.	1.2	11
42	AC Magnetic Properties of Large Volume of Water Susceptibility Measurement in Unshielded Environment. Japanese Journal of Applied Physics, 2006, 45, L1097-L1099.	1.5	11
43	Integrated Magnetic Sensor Probe and Excitation Wire for Nondestructive Detection of Submillimeter Defects. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	11
44	Electric Potential Distribution on Lithium Ion Battery Cathodes Measured Using Terahertz Chemical Microscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 430-437.	2.2	11
45	Changes in Work Function and Electrical Resistance of Pt Thin Films in the Presence of Hydrogen Gas. Japanese Journal of Applied Physics, 2012, 51, 015701.	1.5	10
46	Optical Response in Amorphous GaAs Thin Films Prepared by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2000, 39, 6304-6308.	1.5	9
47	A Proton Pumping Gate Field-Effect Transistor for a Hydrogen Gas Sensor. IEEE Sensors Journal, 2007, 7, 1268-1269.	4.7	9
48	Non-Contact Thickness Gauge for Conductive Materials Using HTS SQUID System. IEEE Transactions on Applied Superconductivity, 2009, 19, 801-803.	1.7	9
49	Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID. IEEE Transactions on Applied Superconductivity, 2013, 23, 1601904-1601904.	1.7	9
50	Label-free detection of low-molecular-weight samples using a terahertz chemical microscope. Applied Physics Express, 2016, 9, 042401.	2.4	9
51	Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics. AIP Advances, 2021, 11, .	1.3	9
52	Hybrid Type HTS-SQUID Magnetometer With Vibrating and Rotating Sample. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	8
53	Absolute-magnetic-field measurement using nanogranular in-gap magnetic sensor with second-harmonic and liquid-nitrogen-temperature operation. AIP Advances, 2017, 7, 056670.	1.3	8
54	Harmonics distribution of iron oxide nanoparticles solutions under diamagnetic background. Journal of Magnetism and Magnetic Materials, 2018, 452, 145-152.	2.3	8

#	Article	IF	CITATIONS
55	Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor. Sensors, 2019, 19, 3001.	3.8	8
56	Low-frequency magnetic field detection for metal sensing. International Journal of Applied Electromagnetics and Mechanics, 2007, 25, 447-451.	0.6	7
57	Stabilization method for signal drifts in terahertz chemical microscopy. Optics Express, 2014, 22, 1330.	3.4	7
58	Terahertz imaging technique for monitoring the flow of buffer solutions at different pH values through a microfluidic chip. Japanese Journal of Applied Physics, 2021, 60, 027003.	1.5	7
59	Changes in Work Function and Electrical Resistance of Pt Thin Films in the Presence of Hydrogen Gas. Japanese Journal of Applied Physics, 2012, 51, 015701.	1.5	7
60	Detection of Lung Cancer Cells in Solutions Using a Terahertz Chemical Microscope. Sensors, 2021, 21, 7631.	3.8	7
61	Time-domain terahertz spectroscopy of Bi2Sr2CaCu2O8+δ thin film. Physica C: Superconductivity and Its Applications, 2002, 367, 322-326.	1.2	6
62	Influence of Viscosity on Dynamic Magnetization of Thermally Blocked Iron Oxide Nanoparticles Characterized by a Sensitive AC Magnetometer. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2765-2772.	1.8	6
63	Development of a Highly Sensitive Magnetic Field Detector With a Wide Frequency Range for Nondestructive Testing Using an HTS Coil With Magnetic Sensors. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	6
64	Hybrid Magnetic Sensor Combined With a Tunnel Magnetoresistive Sensor and High-Temperature Superconducting Magnetic-Field-Focusing Plates. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	6
65	Terahertz emission properties from YBCO thin film log-periodic antennas. Physica C: Superconductivity and Its Applications, 2001, 362, 319-323.	1.2	5
66	Measurement of pH in Fluidic Chip Using a Terahertz Chemical Microscope. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 221-224.	0.1	5
67	Magnetic Detection of Currents in an Electrolytic Cell Using High- \$T_{m C}\$ SQUID. IEEE Transactions on Applied Superconductivity, 2013, 23, 1600804-1600804.	1.7	5
68	Ion Transportation of Electrolytes in a Flow Channel Mapped by an HTS SQUID Scanning System. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	5
69	Evaluation of the Magnetization Properties of Magnetic Nanoparticles in Serum Using HTS-SQUID. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	5
70	Rational Design of Peptides Derived from Odorant-Binding Proteins for SARS-CoV-2-Related Volatile Organic Compounds Recognition. Molecules, 2022, 27, 3917.	3.8	5
71	Real-time monitoring of a photomixing signal using a high-TCJosephson junction. Superconductor Science and Technology, 2004, 17, 998-1002.	3.5	4
72	Magnetic Measurement of the Moisture Content in Soil: Diamagnetic Measurement with the Presence of Ferromagnetic Material. Applied Physics Express, 2008, 1, 067008.	2.4	4

#	Article	IF	CITATIONS
73	Magnetic image detection of the stainless-steel welding part inside a multi-layered tube structure. NDT and E International, 2009, 42, 308-315.	3.7	4
74	Electric Characteristics of a Loop in Which Two Junctions between a Catalytic Metal and a Noncatalytic Metal Are under Different Hydrogen Gas Concentrations. Applied Physics Express, 2012, 5, 034102.	2.4	4
75	Application of a HTS Coil With a Magnetic Sensor to Nondestructive Testing Using a Low-Frequency Magnetic Field. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	4
76	Magnetic Detection of Steel Corrosion at a Buried Position Near the Ground Level Using a Magnetic Resistance Sensor. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	4
77	Noninvasive, labelâ€free, and quantitative monitoring of lipase kinetics using terahertz emission technology. Biotechnology and Bioengineering, 2021, 118, 4246-4254.	3.3	4
78	A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. Photonics, 2022, 9, 26.	2.0	4
79	Crack Detection for Welded Joint With Surface Coating Using Unsaturated AC Magnetic Flux Leakage. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
80	Terahertz radiation from InAs/AlxGa1â^'xSb (x=0.5) heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 574-577.	2.7	3
81	Noninvasive Measurements of Magnetic Field Generated by Induced Current within Human Body under Exposure to Very Low Frequency Electromagnetic Fields. Japanese Journal of Applied Physics, 2005, 44, L532-L534.	1.5	3
82	Visualization of ion transportation in an electrolyte using an HTS-SQUID gradiometer. Physica C: Superconductivity and Its Applications, 2014, 504, 84-87.	1.2	3
83	Development of integrated AC-DC magnetometer using high- <i>T_c</i> SQUID for magnetic properties evaluation of magnetic nanoparticles in solution. Journal of Physics: Conference Series, 2014, 507, 042035.	0.4	3
84	Impedance Evaluation of Hydrogen Sensor Using Ultrathin Platinum Film. Transactions of the Materials Research Society of Japan, 2015, 40, 69-72.	0.2	3
85	Detecting internal defects of a steel plate by using low-frequency magnetic flux leakage method. , 2017, , .		3
86	Magnetic AC Impedance Analysis Method Using High-Tc SQUID Based Magnetic Measurement System. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	3
87	Analysis of AC Impedance in Localized Region Using Magnetic Field Distribution Measured by HTS-SQUID. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	3
88	A Sensitive AC Magnetometer using A Resonant Excitation Coil for Magnetic Fluid Characterization in Nonlinear Magnetization Region. , 2018, , .		3
89	Magnetic characterization change by solvents of magnetic nanoparticles in liquid-phase magnetic immunoassay. AIP Advances, 2019, 9, .	1.3	3
90	Properties of single- and multi-core magnetic nanoparticles assessed by magnetic susceptibility measurements. Journal of Magnetism and Magnetic Materials, 2021, 528, 167812.	2.3	3

#	Article	IF	CITATIONS
91	Development of impedance measurement of lithium ion batteries electrode using terahertz chemical microscope. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2021, 214, e23355.	0.4	3
92	Development of a Compact Moving-Sample Magnetometer Using High- <i>T</i> _c Superconducting Quantum Interference Device. Japanese Journal of Applied Physics, 2012, 51, 046601.	1.5	3
93	Imaging chemical reactions. SPIE Newsroom, 0, , .	0.1	3
94	Magnetic thickness measurement for various iron steels using magnetic sensor and effect of electromagnetic characteristics. AIP Advances, 2022, 12, .	1.3	3
95	Terahertz emission from YBa2Cu3O7â^î́r Josephson junctions excited by femtosecond laser. Physica C: Superconductivity and Its Applications, 2001, 362, 329-332.	1.2	2
96	Hydrogen Response Mechanism of a Proton Pumping Gate FET Gas Sensor. , 2007, , .		2
97	Magnetic evaluation of a solar panel using HTS-SQUID. Physica C: Superconductivity and Its Applications, 2013, 494, 195-198.	1.2	2
98	Moisture Content Evaluation Using Improved High-Tc SQUID-Based Rotating-Sample Magnetometer. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	2
99	Magnetic characteristics measurements of ethanol–water mixtures using a hybrid-type high-temperature superconducting quantum-interference device magnetometer. AlP Advances, 2017, 7, 056707.	1.3	2
100	Laser monitoring of dynamic behavior of magnetic nanoparticles in magnetic field gradient. AIP Advances, 2020, 10, .	1.3	2
101	Evaluation of penetration speed of liquids into skin using a terahertz time-of-flight method. Japanese Journal of Applied Physics, 2021, 60, 032002.	1.5	2
102	Development of Impedance Measurement of Lithium Ion Batteries Electrode using Terahertz Chemical Microscope. IEEJ Transactions on Sensors and Micromachines, 2021, 141, 273-278.	0.1	2
103	A Novel Ion Sensor Without a Reference Electrode. Sensor Letters, 2009, 7, 1163-1166.	0.4	2
104	Visualization of Charge-Transfer Complex for the Detection of 2,4,6-Trinitrotoluene Using Terahertz Chemical Microscope. Journal of the Electrochemical Society, 2021, 168, 117517.	2.9	2
105	Preparation and picosecond optical response of Bi system high-Tc superconductors. Physica C: Superconductivity and Its Applications, 2002, 367, 332-336.	1.2	1
106	Coherent terahertz radiation from Tl2Ba2CaCu2O8+Î′ thin films excited by optical laser pulse under magnetic field. Physica C: Superconductivity and Its Applications, 2003, 388-389, 481-482.	1.2	1
107	Generation of sub-terahertz waves using a semiconductor photomixer. Superconductor Science and Technology, 2003, 16, 1540-1543.	3.5	1
108	Evaluation of spatial resolution in laser-terahertz emission microscope for inspecting electrical faults in integrated circuits. , 2004, , .		1

Τοςηιμικό Κιwa

#	Article	IF	CITATIONS
109	Redox reactions of enzymes measured by terahertz chemical microscope. , 2008, , .		1
110	DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer. Journal of Physics: Conference Series, 2014, 507, 042026.	0.4	1
111	Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system. Physica C: Superconductivity and Its Applications, 2016, 530, 113-116.	1.2	1
112	High-Resolution Laser-Assisted Magnetic Nanoparticle Imaging Using a High-TC SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	1
113	Sensitivity Improvement of Sample Rotation Measurement Method in HTS-SQUID Magnetometer for Diamagnetic Materials. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	1
114	Evaluation of Bio-materials Using a Laser-excited Terahertz Wave. Nippon Laser Igakkaishi, 2019, 39, 341-346.	0.0	1
115	Improvement of contrast of Terahertz Images of a Terahertz Chemical Microscopy using Adaptive Digital Filter. , 2019, , .		1
116	Hydrogen Selectivity of a Proton-Pumping Gate FET Hydrogen Sensor in an AC Modulation Mode. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 110-114.	0.1	1
117	Temperature Control and Packaging Optimization of the Integrated Hydrogen Sensor. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 278-282.	0.1	1
118	Development and Evaluation of a Pt/Ti-FET-Type Hydrogen Sensor. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 407-411.	0.1	1
119	Characterization of New Structural Ion Sensor for Sodium Ion. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 309-313.	0.1	1
120	Improvement of Sensitivity for a Compact Magnetometer using HTS-SQUID with Rotating Sample. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 347-351.	0.2	1
121	Immune assay using a micro-flow channels detected by a terahertz chemical microscopy. , 2018, , .		1
122	A benchtop induction-based AC magnetometer for a fast characterization of magnetic nanoparticles. Engineering Research Express, 2022, 4, 025047.	1.6	1
123	Magnetic flux letters visualized by a laser-terahertz emission microscope. , 2004, 5354, 112.		0
124	Photomixer with superconductor detector for sub-THz generator. , 2004, , .		0
125	Laser-terahertz emission from the chemical sensing plate. , 2007, , .		0
126	Detection of Photomixing Signals With a YBCO Josephson Junction Coupled to a Coplanar Waveguide. IEEE Transactions on Applied Superconductivity, 2007, 17, 321-323.	1.7	0

#	Article	IF	CITATIONS
127	Evaluation of the catalytic metal for the hydrogen sensor using terahertz chemical microscope. , 2009, , .		0
128	Chemical imaging of μ-TAS using terahertz chemical microscope. , 2010, , .		0
129	Development of a compact magnetometer with an AC/DC magnetic field using HTS-SQUID. , 2013, , .		0
130	Evaluation of work function of the catalytic electrode in the fuel cells. , 2013, , .		0
131	Hydrogen gas response of meta-materials made from the catalytic metal. , 2013, , .		0
132	Nondestructive inspection of SiGe films using laser terahertz emission microscopy. , 2013, , .		0
133	Improvement of sensitivity for a compact magnetometer using HTS-SQUID with rotating sample. , 2013, , .		Ο
134	A terahertz technology for label-free immune assay. , 2015, , .		0
135	Simultaneously detection two types of ions using THz chemical microscopy. , 2015, , .		Ο
136	Improvement of Sensitivity of a Compact Magnetometer by Using HTS‣QUID with Rotating Sample. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2016, 194, 9-14.	0.4	0
137	Compact AC/DC Susceptometer Using a Highâ€Temperature Superconducting Quantum Interference Device. Electronics and Communications in Japan, 2016, 99, 31-37.	0.5	Ο
138	Evaluation of Li-ion battery using a Terahertz Chemical Microscope. , 2018, , .		0
139	A sensitive magnetometer utilizing high-Tc SQUID for magnetic property characterization. Microsystem Technologies, 2021, 27, 3413-3420.	2.0	Ο
140	Investigation of Cross-Section Measurement Method for All-Solid-State Batteries Using Terahertz Chemical Microscopy. , 2021, , .		0
141	Development of Ion Concentration Measurement Method for Minute Volume of Blood Using Terahertz Chemical Microscope. , 2021, , .		Ο
142	Evaluation of Cosmetic Liquid Penetration Using Terahertz Time-of-Flight Method. , 2021, , .		0
143	Terahertz Radiation from Strongly Correlated Electron Systems and Related Phenomena The Review of Laser Engineering, 2002, 30, 370-375.	0.0	0
144	Evaluation of the Sensitivity of Hydrogen Sensors Covered with Polytetrafluoroethylene as a Protective Membrane for Humidity. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 401-406.	0.1	0

Τοςηιμικό Κιώα

#	Article	IF	CITATIONS
145	FET Hydrogen Sensor by Direct Heating of Platinum Metal Gate for Fast Response Time. IEEJ Transactions on Sensors and Micromachines, 2014, 134, 264-269.	0.1	0
146	Compact AC/DC Susceptometer using a High-temperature Superconductor Superconducting Quantum Interference Device. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 369-374.	0.2	0
147	Development and Application of a Compact Rotating-sample Magnetometer Using HTS-SQUID. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2014, 49, 352-358.	0.1	Ο
148	Chloride Ion Sensor using Electrochemical Impedance Spectroscopy. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 102-107.	0.1	0
149	Development of in situ methods for battery using a THz chemical microscope. , 2018, , .		Ο
150	Evaluation of penetration of cosmetic liquid with Terahertz time-of-flight method. , 2018, , .		0
151	Applications of Terahertz Technology for Bio-related Materials. Oleoscience, 2018, 18, 455-460.	0.0	0
152	Reduction of Wind Disturbance by Optimizing the Drive Current of Pt Ultra-thin Film Hydrogen Sensor. IEEJ Transactions on Sensors and Micromachines, 2020, 140, 92-96.	0.1	0