Dejian Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5550716/publications.pdf Version: 2024-02-01

DELLAN REN

#	Article	IF	CITATIONS
1	A sperm ion channel required for sperm motility and male fertility. Nature, 2001, 413, 603-609.	27.8	833
2	Lysosomal Physiology. Annual Review of Physiology, 2015, 77, 57-80.	13.1	768
3	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	28.9	456
4	mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State. Cell, 2013, 152, 778-790.	28.9	313
5	The Neuronal Channel NALCN Contributes Resting Sodium Permeability and Is Required for Normal Respiratory Rhythm. Cell, 2007, 129, 371-383.	28.9	299
6	The Control of Male Fertility by Spermatozoan Ion Channels. Annual Review of Physiology, 2012, 74, 453-475.	13.1	291
7	Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature, 2016, 531, 196-201.	27.8	216
8	A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability. Cell, 2015, 162, 836-848.	28.9	178
9	Extracellular Calcium Controls Background CurrentÂand Neuronal Excitability via an UNC79-UNC80-NALCN Cation Channel Complex. Neuron, 2010, 68, 488-499.	8.1	176
10	TMEM175 Is an Organelle K+ Channel Regulating Lysosomal Function. Cell, 2015, 162, 1101-1112.	28.9	153
11	CatSperβ, a Novel Transmembrane Protein in the CatSper Channel Complex. Journal of Biological Chemistry, 2007, 282, 18945-18952.	3.4	148
12	A Superfamily of Voltage-gated Sodium Channels in Bacteria*. Journal of Biological Chemistry, 2004, 279, 9532-9538.	3.4	147
13	Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature, 2009, 457, 741-744.	27.8	145
14	The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nature Chemical Biology, 2014, 10, 463-469.	8.0	142
15	The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac. Journal of General Physiology, 2002, 120, 845-853.	1.9	141
16	CATSPER Channel-Mediated Ca2+ Entry into Mouse Sperm Triggers a Tail-to-Head Propagation1. Biology of Reproduction, 2007, 77, 551-559.	2.7	134
17	Sodium Leak Channels in Neuronal Excitability and Rhythmic Behaviors. Neuron, 2011, 72, 899-911.	8.1	128
18	A Novel, Single, Transmembrane Protein CATSPERG Is Associated with CATSPER1 Channel Protein1. Biology of Reproduction, 2009, 81, 539-544.	2.7	121

Dejian Ren

#	Article	IF	CITATIONS
19	Calcium Signaling Through CatSper Channels in Mammalian Fertilization. Physiology, 2010, 25, 165-175.	3.1	108
20	Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature, 2017, 550, 411-414.	27.8	104
21	Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science, 2020, 367, 301-305.	12.6	104
22	The BSA-induced Ca(2+) influx during sperm capacitation is CATSPER channel-dependent. Reproductive Biology and Endocrinology, 2009, 7, 119.	3.3	100
23	Egg Coat Proteins Activate Calcium Entry into Mouse Sperm via CATSPER Channels1. Biology of Reproduction, 2009, 80, 1092-1098.	2.7	82
24	Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nature Protocols, 2017, 12, 1639-1658.	12.0	68
25	A growth-factor-activated lysosomal K+ channel regulates Parkinson's pathology. Nature, 2021, 591, 431-437.	27.8	62
26	ORAI1, STIM1/2, and RYR1 shape subsecond Ca ²⁺ microdomains upon T cell activation. Science Signaling, 2018, 11, .	3.6	59
27	The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature, 2017, 547, 472-475.	27.8	57
28	Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn. Neuron, 2017, 94, 294-303.e4.	8.1	52
29	Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability. American Journal of Human Genetics, 2016, 98, 202-209.	6.2	45
30	Involvement of Na ⁺ -leak Channel in Substance P-induced Depolarization of Pacemaking Activity in Interstitial Cells of Cajal. Cellular Physiology and Biochemistry, 2012, 29, 501-510.	1.6	40
31	A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability. Nature Communications, 2014, 5, 5015.	12.8	36
32	UNC80 functions as a scaffold for Src kinases in NALCN channel function. Channels, 2009, 3, 161-163.	2.8	28
33	NALCN channels enhance the intrinsic excitability of spinal projection neurons. Pain, 2018, 159, 1719-1730.	4.2	22
34	CLN7 is an organellar chloride channel regulating lysosomal function. Science Advances, 2021, 7, eabj9608.	10.3	20
35	Intellectual disability-associated UNC80 mutations reveal inter-subunit interaction and dendritic function of the NALCN channel complex. Nature Communications, 2020, 11, 3351.	12.8	17
36	Calcium Signaling in Sperm: Help from Prostasomes. Science Signaling, 2011, 4, pe27.	3.6	12

#	Article	IF	CITATIONS
37	Genetic analysis of mice strains with variable serum sodium concentrations identifies the Nalcn sodium channel as a novel player in osmoregulation. FASEB Journal, 2011, 25, 662.6.	0.5	0