
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5549110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of troglitazone on AMPK in HepG2 cells. Archives of Biochemistry and Biophysics, 2017, 623-624, 49-57.	1.4	7
2	Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression. PLoS ONE, 2016, 11, e0153017.	1.1	23
3	Knockdown of GSK3Î ² increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Bioscience Reports, 2016, 36, .	1.1	46
4	A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice. Diabetologia, 2016, 59, 2654-2663.	2.9	39
5	Unraveling the actions of AMP-activated protein kinase in metabolic diseases: Systemic to molecular insights. Metabolism: Clinical and Experimental, 2016, 65, 634-645.	1.5	38
6	PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells. Journal of Biological Chemistry, 2016, 291, 5664-5675.	1.6	45
7	Response to Comments on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673–686. Diabetes, 2015, 64, e38-e39.	0.3	4
8	Overexpression of SIRT1 in Rat Skeletal Muscle Does Not Alter Glucose Induced Insulin Resistance. PLoS ONE, 2015, 10, e0121959.	1.1	17
9	Improved Insulin Sensitivity 3 Months After RYGB Surgery Is Associated With Increased Subcutaneous Adipose Tissue AMPK Activity and Decreased Oxidative Stress. Diabetes, 2015, 64, 3155-3159.	0.3	48
10	Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes, 2015, 64, 673-686.	0.3	165
11	Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. American Journal of Physiology - Cell Physiology, 2015, 308, C249-C263.	2.1	45
12	Resveratrol Prevents Oxidative Stress-Induced Senescence and Proliferative Dysfunction by Activating the AMPK-FOXO3 Cascade in Cultured Primary Human Keratinocytes. PLoS ONE, 2015, 10, e0115341.	1.1	109
13	Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats. PLoS ONE, 2015, 10, e0127388.	1.1	23
14	Glucagon-Like Peptide-1 (GLP-1) Analog Liraglutide Inhibits Endothelial Cell Inflammation through a Calcium and AMPK Dependent Mechanism. PLoS ONE, 2014, 9, e97554.	1.1	139
15	Increased Subcutaneous Adipose Tissue Expression of Genes Involved in Glycerolipid-Fatty Acid Cycling in Obese Insulin-Resistant Versus -Sensitive Individuals. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2518-E2528.	1.8	16
16	AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?. Current Obesity Reports, 2014, 3, 248-255.	3.5	19
17	Insulin inhibits AMPK activity and phosphorylates AMPK Ser485/491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Archives of Biochemistry and Biophysics, 2014, 562, 62-69.	1.4	112
18	AMPK activation: a therapeutic target for type 2 diabetes?. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 241.	1.1	214

#	Article	IF	CITATIONS
19	Intensive insulin for type 2 diabetes: the risk of causing harm. Lancet Diabetes and Endocrinology,the, 2013, 1, 9-10.	5.5	31
20	Pioglitazone Acutely Reduces Energy Metabolism and Insulin Secretion in Rats. Diabetes, 2013, 62, 2122-2129.	0.3	28
21	SIRT4 Coordinates the Balance between Lipid Synthesis and Catabolism by Repressing Malonyl CoA Decarboxylase. Molecular Cell, 2013, 50, 686-698.	4.5	315
22	What distinguishes adipose tissue of severely obese humans who are insulin sensitive and resistant?. Current Opinion in Lipidology, 2013, 24, 49-56.	1.2	25
23	Protein Kinase C-β Contributes to Impaired Endothelial Insulin Signaling in Humans With Diabetes Mellitus. Circulation, 2013, 127, 86-95.	1.6	149
24	AMPK, insulin resistance, and the metabolic syndrome. Journal of Clinical Investigation, 2013, 123, 2764-2772.	3.9	672
25	Insulin Resistance due to Nutrient Excess: Mechanisms of AMPK Downregulation. FASEB Journal, 2013, 27, 701.2.	0.2	0
26	Nutrient Excess in AMPK Downregulation and Insulin Resistance. Journal of Endocrinology, Diabetes & Obesity, 2013, 1, 1008.	0.7	19
27	Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. Journal of Lipid Research, 2012, 53, 792-801.	2.0	179
28	Association of Fetuin-A With Incident Diabetes Mellitus in Community-Living Older Adults. Circulation, 2012, 125, 2316-2322.	1.6	66
29	A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. American Journal of Physiology - Cell Physiology, 2012, 303, C4-C13.	2.1	71
30	Acute Activation of AMP-Activated Protein Kinase Prevents H2O2-Induced Premature Senescence in Primary Human Keratinocytes. PLoS ONE, 2012, 7, e35092.	1.1	39
31	The evolution of insulin resistance in muscle of the glucose infused rat. Archives of Biochemistry and Biophysics, 2011, 509, 133-141.	1.4	15
32	Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochemical and Biophysical Research Communications, 2011, 404, 382-387.	1.0	189
33	Activation of AMP-Activated Protein Kinase Prevents Lipotoxicity in Retinal Pericytes. , 2011, 52, 3630.		32
34	Optimal concentrations of N-decanoyl-N-methylglucamine and sodium dodecyl sulfate allow the extraction and analysis of membrane proteins. Analytical Biochemistry, 2011, 418, 298-300.	1.1	6
35	Insulin resistance due to nutrient excess. Cell Cycle, 2011, 10, 3447-3451.	1.3	80
36	Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion. Circulation, 2011, 124, 806-813.	1.6	61

#	Article	IF	CITATIONS
37	Acute exercise activates AMPK and eNOS in the mouse aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1255-H1265.	1.5	67
38	Intermediary Metabolism of Carbohydrate, Protein, and Fat. , 2011, , 25-51.		3
39	Adipose tissue inflammation and insulin resistance: all obese humans are not created equal. Biochemical Journal, 2010, 430, e1-e4.	1.7	30
40	SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464, 121-125.	13.7	1,388
41	Downregulation of AMPK Accompanies Leucine- and Glucose-Induced Increases in Protein Synthesis and Insulin Resistance in Rat Skeletal Muscle. Diabetes, 2010, 59, 2426-2434.	0.3	157
42	Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E49-E58.	1.8	238
43	Activation of AMPâ€activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acylâ€CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB Journal, 2010, 24, 4229-4239.	0.2	59
44	AMPK and SIRT1: a long-standing partnership?. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E751-E760.	1.8	717
45	The Metabolic Syndrome. , 2010, , 822-839.		2
46	Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle. Diabetes, 2009, 58, 1953-1960.	0.3	133
47	Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 16848-16859.	1.6	73
48	Association of AMP-activated Protein Kinase Subunits With Glycogen Particles as Revealed In Situ by Immunoelectron Microscopy. Journal of Histochemistry and Cytochemistry, 2009, 57, 963-971.	1.3	32
49	Pioglitazone Acutely Reduces Insulin Secretion and Causes Metabolic Deceleration of the Pancreatic β-Cell at Submaximal Glucose Concentrations. Endocrinology, 2009, 150, 3465-3474.	1.4	51
50	AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal, 2009, 418, 261-275.	1.7	375
51	Ablation of ARNT/HIF1Î ² in Liver Alters Gluconeogenesis, Lipogenic Gene Expression, and Serum Ketones. Cell Metabolism, 2009, 9, 428-439.	7.2	76
52	Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochemical and Biophysical Research Communications, 2009, 378, 836-841.	1.0	150
53	SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Journal of Biological Chemistry, 2008, 283, 27628-27635.	1.6	693
54	AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte. Journal of Biological Chemistry, 2008, 283, 16514-16524.	1.6	219

#	Article	IF	CITATIONS
55	Physical Inactivity Rapidly Induces Insulin Resistance and Microvascular Dysfunction in Healthy Volunteers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2650-2656.	1.1	372
56	AMPK regulation of the growth of cultured human keratinocytes. Biochemical and Biophysical Research Communications, 2006, 349, 519-524.	1.0	15
57	Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1296-E1303.	1.8	38
58	Metabolic Syndrome: Adenosine Monophosphateâ€activated Protein Kinase and Malonyl Coenzyme A. Obesity, 2006, 14, 25S-33S.	1.5	57
59	AMP-activated protein kinase and its regulation by adiponectin and interleukin-6. Food Nutrition Research, 2006, 50, 85-91.	0.3	7
60	Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E175-E181.	1.8	247
61	Interleukin-6 Regulation of AMP-Activated Protein Kinase: Potential Role in the Systemic Response to Exercise and Prevention of the Metabolic Syndrome. Diabetes, 2006, 55, S48-S54.	0.3	158
62	Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E471-E479.	1.8	105
63	Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor Î ³ Agonists. Journal of Biological Chemistry, 2006, 281, 2654-2660.	1.6	558
64	AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E794-E800.	1.8	130
65	Palmitate-Induced Apoptosis in Cultured Bovine Retinal Pericytes: Roles of NAD(P)H Oxidase, Oxidant Stress, and Ceramide. Diabetes, 2005, 54, 1838-1845.	0.3	156
66	Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E133-E142.	1.8	143
67	Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats. Biochemical and Biophysical Research Communications, 2005, 326, 851-858.	1.0	110
68	Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochemical and Biophysical Research Communications, 2005, 336, 309-315.	1.0	129
69	Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments of rat hepatocytes. FEBS Letters, 2005, 579, 6581-6586.	1.3	23
70	AMPK, the metabolic syndrome and cancer. Trends in Pharmacological Sciences, 2005, 26, 69-76.	4.0	392
71	AMP-activated protein kinase and malonyl-CoA: Targets for treating insulin resistance?. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 157-163.	0.5	17
72	Free Fatty Acids Produce Insulin Resistance and Activate the Proinflammatory Nuclear Factor-ÂB Pathway in Rat Liver. Diabetes, 2005, 54, 3458-3465.	0.3	476

#	Article	IF	CITATIONS
73	Metabolic and hormonal interactions between muscle and adipose tissue. Proceedings of the Nutrition Society, 2004, 63, 381-385.	0.4	56
74	A Role for the Malonyl-CoA/Long-Chain Acyl-CoA Pathway of Lipid Signaling in the Regulation of Insulin Secretion in Response to Both Fuel and Nonfuel Stimuli. Diabetes, 2004, 53, 1007-1019.	0.3	164
75	AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nature Reviews Drug Discovery, 2004, 3, 340-351.	21.5	385
76	AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells. Journal of Biological Chemistry, 2004, 279, 47898-47905.	1.6	401
77	Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochemical and Biophysical Research Communications, 2004, 314, 580-585.	1.0	209
78	AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochemical and Biophysical Research Communications, 2004, 320, 449-454.	1.0	242
79	AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 2004, 321, 161-167.	1.0	247
80	AMPK inhibits fatty acid-induced increases in NF-κB transactivation in cultured human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 2004, 324, 1204-1209.	1.0	228
81	Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Molecular and Cellular Biochemistry, 2003, 253, 65-70.	1.4	154
82	Glucose Autoregulates Its Uptake in Skeletal Muscle: Involvement of AMP-Activated Protein Kinase. Diabetes, 2003, 52, 1635-1640.	0.3	86
83	Role of Disulfide Bonds in Acrp30/Adiponectin Structure and Signaling Specificity. Journal of Biological Chemistry, 2003, 278, 50810-50817.	1.6	423
84	Insulin Resistance in Type 2 Diabetes: Association with Truncal Obesity, Impaired Fitness, and Atypical Malonyl Coenzyme A Regulation. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 82-87.	1.8	53
85	Minireview: Malonyl CoA, AMP-Activated Protein Kinase, and Adiposity. Endocrinology, 2003, 144, 5166-5171.	1.4	252
86	Prevention of type 2 diabetes and its macrovascular complications: whom, when, and how should we treat?. Current Opinion in Endocrinology, Diabetes and Obesity, 2003, 10, 229-236.	0.6	6
87	The Endocrine System: Metabolic Effects of the Pancreatic, Adrenal, Thyroidal, and Growth Hormones. , 2003, , 361-422.		5
88	AICAR Administration Causes an Apparent Enhancement of Muscle and Liver Insulin Action in Insulin-Resistant High-Fat-Fed Rats. Diabetes, 2002, 51, 2886-2894.	0.3	272
89	Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16309-16313.	3.3	893
90	Hyperglycemia-Induced Apoptosis in Human Umbilical Vein Endothelial Cells: Inhibition by the AMP-Activated Protein Kinase Activation. Diabetes, 2002, 51, 159-167.	0.3	319

#	Article	IF	CITATIONS
91	Exercise and insulin signaling: a historical perspective. Journal of Applied Physiology, 2002, 93, 765-772.	1.2	34
92	Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na ⁺ -K ⁺ -ATPase activity. American Journal of Physiology - Cell Physiology, 2002, 282, C560-C566.	2.1	76
93	Coordinate Regulation of Malonyl-CoA Decarboxylase,sn-Glycerol-3-phosphate Acyltransferase, and Acetyl-CoA Carboxylase by AMP-activated Protein Kinase in Rat Tissues in Response to Exercise. Journal of Biological Chemistry, 2002, 277, 32571-32577.	1.6	327
94	Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and IÂB-Â. Diabetes, 2002, 51, 2005-2011.	0.3	1,216
95	Alterations of nPKC distribution, but normal Akt/PKB activation in denervated rat soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E318-E325.	1.8	12
96	Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil,Psammomys obesus. Diabetes/Metabolism Research and Reviews, 2002, 18, 217-223.	1.7	5
97	Hyperglycemia and Insulin Resistance: Possible Mechanisms. Annals of the New York Academy of Sciences, 2002, 967, 43-51.	1.8	123
98	Dissociation of 5â€ ² AMP-Activated Protein Kinase Activation and Glucose Uptake Stimulation by Mitochondrial Uncoupling and Hyperosmolar Stress: Differential Sensitivities to Intracellular Ca2+ and Protein Kinase C Inhibition. Biochemical and Biophysical Research Communications, 2001, 285, 1066-1070.	1.0	49
99	Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E335-E340.	1.8	72
100	Inhibition of insulin signaling and glycogen synthesis by phorbol dibutyrate in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E8-E15.	1.8	22
101	Acute Regulation of Fatty Acid Oxidation and AMP-Activated Protein Kinase in Human Umbilical Vein Endothelial Cells. Circulation Research, 2001, 88, 1276-1282.	2.0	179
102	CELL BIOLOGY: Enhanced: Chewing the Fat-ACC and Energy Balance. Science, 2001, 291, 2558-2559.	6.0	28
103	Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E259-E265.	1.8	73
104	Activation of Malonyl-CoA Decarboxylase in Rat Skeletal Muscle by Contraction and the AMP-activated Protein Kinase Activator 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside. Journal of Biological Chemistry, 2000, 275, 24279-24283.	1.6	162
105	Malonyl-CoA, fuel sensing, and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1-E18.	1.8	326
106	Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1070-E1076.	1.8	71
107	Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1030-E1037.	1.8	40
108	The Effect of AMP-Activated Protein Kinase and Its Activator AICAR on the Metabolism of Human Umbilical Vein Endothelial Cells. Biochemical and Biophysical Research Communications, 1999, 265, 112-115	1.0	86

#	Article	IF	CITATIONS
109	Malonyl CoA, Long Chain Fatty Acyl CoA and Insulin Resistance in Skeletal Muscle. Journal of Basic and Clinical Physiology and Pharmacology, 1998, 9, 295-308.	0.7	39
110	Diet-Induced Muscle Insulin Resistance in Rats Is Ameliorated by Acute Dietary Lipid Withdrawal or a Single Bout of Exercise: Parallel Relationship Between Insulin Stimulation of Glucose Uptake and Suppression of Long-Chain Fatty Acyl-CoA. Diabetes, 1997, 46, 2022-2028.	0.3	159
111	Contraction-induced Changes in Acetyl-CoA Carboxylase and 5′-AMP-activated Kinase in Skeletal Muscle. Journal of Biological Chemistry, 1997, 272, 13255-13261.	1.6	354
112	Exercise and Metabolic Disorders. Medicine and Sport Science, 1993, 38, 269-298.	1.4	1
113	Diabetes, Exercise, and Atherosclerosis. Diabetes Care, 1992, 15, 1787-1793.	4.3	42
114	Glucose and diabetic vascular disease 1. FASEB Journal, 1992, 6, 2905-2914.	0.2	361
115	Hyperglycemia, Diabetes, and Vascular Disease: An Overview. , 1992, , 3-20.		13
116	Could intranasal insulin be useful in the treatment of non-insulin-dependent diabetes mellitus?. Diabetes Research and Clinical Practice, 1991, 13, 69-75.	1.1	6
117	Mutations in the Juxtamembrane Region of the Insulin Receptor Impair Activation of Phosphatidylinositol 3-Kinase by Insulin. Molecular Endocrinology, 1991, 5, 769-777.	3.7	49
118	Insulin-like growth factor I binding and receptor kinase in red and white muscle. FEBS Letters, 1988, 234, 257-262.	1.3	30
119	Energy state of bovine cerebral microvessels: Comparison of isolation methods. Microvascular Research, 1988, 35, 167-178.	1.1	38
120	Metabolic characterization of isolated cerebral microvessels: ATP and ADP concentrations. Microvascular Research, 1988, 35, 325-333.	1.1	20
121	Impaired fibrinolytic response to exercise in type II diabetes: Effects of exercise and physical training. Metabolism: Clinical and Experimental, 1988, 37, 924-929.	1.5	56
122	Exercise and Type I Diabetes Mellitus. Exercise and Sport Sciences Reviews, 1988, 16, 285???304.	1.6	22
123	Exercise and Metabolic Disorders. Medicine and Sport Science, 1988, 27, 230-253.	1.4	Ο
124	Insulin and exercise stimulate muscle alpha-aminoisobutyric acid transport by a Na+î—,K+-ATPase independent pathway. Biochemical and Biophysical Research Communications, 1986, 134, 1342-1349.	1.0	18
125	Regulation of myofibrillar protein degradation in rat skeletal muscle during brief and prolonged starvation. Metabolism: Clinical and Experimental, 1986, 35, 1121-1127.	1.5	89
126	The postexercise state: Altered effects of insulin on skeletal muscle and their physiologic relevance. Diabetes/metabolism Reviews, 1986, 1, 425-444.	0.4	11

#	Article	IF	CITATIONS
127	Atherosclerosis and physical activity. Diabetes/metabolism Reviews, 1986, 1, 513-553.	0.4	42
128	Intranasal Aerosolized Insulin. New England Journal of Medicine, 1985, 312, 1078-1084.	13.9	210
129	Diabetes as an atherogenic factor. Progress in Cardiovascular Diseases, 1984, 26, 373-412.	1.6	286
130	INFLUENCE OF MUSCLE USE ON AMINO ACID METABOLISM. Exercise and Sport Sciences Reviews, 1982, 10, 1???26.	1.6	11
131	Alpha and Beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiologica Scandinavica, 1982, 116, 215-222.	2.3	77
132	Muscle Clucose Metabolism following Exercise in the Rat. Journal of Clinical Investigation, 1982, 69, 785-793.	3.9	435
133	Diabetes and exercise. American Journal of Medicine, 1981, 70, 201-209.	0.6	104
134	Ornithine decarboxylase activity in insulin-deficient states. Biochemical Journal, 1980, 192, 725-732.	3.2	27
135	Non-β-cell tumor hypoglycemia associated with increased nonsuppressible insulin-like protein (NSILP). American Journal of Medicine, 1979, 66, 154-159.	0.6	25
136	Effect of diabetes on the induction of ornithine decarboxylase by refeeding. Life Sciences, 1979, 25, 553-559.	2.0	8
137	Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism: Clinical and Experimental, 1976, 25, 427-435.	1.5	131
138	The Formation of Glutamine and Alanine in Skeletal Muscle. Journal of Biological Chemistry, 1974, 249, 5500-5506.	1.6	269
139	Synthesis of Essential Amino Acids from Their α-Keto Analogues by Perfused Rat Liver and Muscle. Journal of Clinical Investigation, 1973, 52, 2865-2877.	3.9	122
140	A biochemical and morphologic study of very low density lipoproteins in carbohydrate-induced hypertriglyceridemia. Journal of Clinical Investigation, 1971, 50, 1355-1368.	3.9	132
141	The Regulation of Gluconeogenesis. Journal of Biological Chemistry, 1970, 245, 818-824.	1.6	44
142	Relation of fatty acid oxidation to gluconeogenesis: Effect of pentenoic acid. Life Sciences, 1968, 7, 1083-1089.	2.0	27