
Elena Novelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5548548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal Ganglion Cells Survive and Maintain Normal Dendritic Morphology in a Mouse Model of Inherited Photoreceptor Degeneration. Journal of Neuroscience, 2008, 28, 14282-14292.	1.7	222
2	Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1679-1684.	3.3	136
3	Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. European Journal of Neuroscience, 2007, 25, 2741-2754.	1.2	128
4	Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18706-18711.	3.3	105
5	Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Progress in Retinal and Eye Research, 2015, 48, 62-81.	7.3	86
6	Botulinum Neurotoxin A Impairs Neurotransmission Following Retrograde Transynaptic Transport. Traffic, 2012, 13, 1083-1089.	1.3	79
7	Involvement of Autophagic Pathway in the Progression of Retinal Degeneration in a Mouse Model of Diabetes. Frontiers in Cellular Neuroscience, 2016, 10, 42.	1.8	74
8	Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development (Cambridge), 2005, 132, 2873-2882.	1.2	66
9	Age-dependent remodelling of retinal circuitry. Neurobiology of Aging, 2009, 30, 819-828.	1.5	58
10	Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa. PLoS ONE, 2012, 7, e50726.	1.1	55
11	Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy. Experimental Neurology, 2008, 210, 388-401.	2.0	52
12	Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: A paradigm of early onset photoreceptor degeneration. Journal of Comparative Neurology, 2012, 520, 1406-1423.	0.9	43
13	Visual impairment in FOXG1-mutated individuals and mice. Neuroscience, 2016, 324, 496-508.	1.1	41
14	Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development (Cambridge), 2002, 129, 3803-3814.	1.2	40
15	Complexity of retinal cone bipolar cells. Progress in Retinal and Eye Research, 2010, 29, 272-283.	7.3	36
16	Cone survival and preservation of visual acuity in an animal model of retinal degeneration. European Journal of Neuroscience, 2013, 37, 1853-1862.	1.2	36
17	The genesis of retinal architecture: An emerging role for mechanical interactions?. Progress in Retinal and Eye Research, 2008, 27, 260-283.	7.3	35
18	The spatial organization of cholinergic mosaics in the adult mouse retina. European Journal of Neuroscience, 2000, 12, 3819-3822.	1.2	30

Elena Novelli

#	Article	IF	CITATIONS
19	The Effects of Natural Cell Loss on the Regularity of the Retinal Cholinergic Arrays. Journal of Neuroscience, 2000, 20, RC60-RC60.	1.7	24
20	Rescuing cones and daylight vision in retinitis pigmentosa mice. FASEB Journal, 2019, 33, 10177-10192.	0.2	24
21	Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse. Scientific Reports, 2017, 7, 5730.	1.6	22
22	Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Molecular Vision, 2014, 20, 1545-56.	1.1	22
23	Retinal ganglion cells with NADPH-diaphorase activity in the chick form a regular mosaic with a strong dorsoventral asymmetry that can be modelled by a minimal spacing rule. European Journal of Neuroscience, 2000, 12, 613-620.	1.2	21
24	Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 5381.	1.8	20
25	Mechanisms controlling the formation of retinal mosaics. Progress in Brain Research, 2005, 147, 141-153.	0.9	17
26	Inner retinal preservation in the photoinducible I307N rhodopsin mutant mouse, a model of autosomal dominant retinitis pigmentosa. Journal of Comparative Neurology, 2020, 528, 1502-1522.	0.9	17
27	Retinal Phenotype in the rd9 Mutant Mouse, a Model of X-Linked RP. Frontiers in Neuroscience, 2019, 13, 991.	1.4	16
28	Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. Journal of Comparative Neurology, 2019, 527, 187-211.	0.9	14
29	Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa. Frontiers in Neuroscience, 2020, 14, 372.	1.4	11
30	AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS ONE, 2016, 11, e0148874.	1.1	10
31	Determination of the serine palmitoyl transferase inhibitor myriocin by electrospray and Qâ€ŧrap mass spectrometry. Biomedical Chromatography, 2017, 31, e4026.	0.8	7
32	A three-dimensional analysis of the development of the horizontal cell mosaic in the rat retina: Implications for the mechanisms controlling pattern formation. Visual Neuroscience, 2007, 24, 91-98.	0.5	3
33	The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa. Scientific Reports, 2016, 6, 35919.	1.6	3
34	Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 2021, 11, 15146.	1.6	2